NETCONF Working Group
Internet Engineering Task Force (IETF) K. Watsen
Internet-Draft
Request for Comments: 9642 Watsen Networks
Intended status:
Category: Standards Track 16 March 2024
Expires: 17 September 2024
ISSN: 2070-1721
A YANG Data Model for a Keystore and Keystore Operations
draft-ietf-netconf-keystore-35
Abstract
This document presents a YANG module called "ietf-keystore" that
enables centralized configuration of both symmetric and asymmetric
keys. The secret value for both key types may be encrypted or
hidden. Asymmetric keys may be associated with certificates.
Notifications are sent when certificates are about to expire.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents an Internet Standards Track document.
This document is a product of the Internet Engineering Task Force
(IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list It represents the consensus of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid the IETF community. It has
received public review and has been approved for a maximum publication by the
Internet Engineering Steering Group (IESG). Further information on
Internet Standards is available in Section 2 of RFC 7841.
Information about the current status of six months this document, any errata,
and how to provide feedback on it may be updated, replaced, or obsoleted by other documents obtained at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 17 September 2024.
https://www.rfc-editor.org/info/rfc9642.
Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info)
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Revised BSD License text as described in Section 4.e of the
Trust Legal Provisions and are provided without warranty as described
in the Revised BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1. Relation to other Other RFCs . . . . . . . . . . . . . . . . . 5
1.2. Specification Language . . . . . . . . . . . . . . . . . 6
1.3. Terminology . . . . . . . . . . . . . . . . . . . . . . . 6
1.4. Adherence to the NMDA . . . . . . . . . . . . . . . . . . 7
1.5. Conventions . . . . . . . . . . . . . . . . . . . . . . . 7
2. The "ietf-keystore" Module . . . . . . . . . . . . . . . . . 7
2.1. Data Model Overview . . . . . . . . . . . . . . . . . . . 7
2.2. Example Usage . . . . . . . . . . . . . . . . . . . . . . 16
2.3. YANG Module . . . . . . . . . . . . . . . . . . . . . . . 27
3. Support for Built-in Built-In Keys . . . . . . . . . . . . . . . . . . 36
4. Encrypting Keys in Configuration . . . . . . . . . . . . . . 38
5. Security Considerations . . . . . . . . . . . . . . . . . . . 43
5.1. Security of Data at Rest and in Motion . . . . . . . . . 43
5.2. Unconstrained Private Key Usage . . . . . . . . . . . . . 43
5.3. Security Considerations for the "ietf-keystore" YANG Module . . . 43
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 45
6.1. The "IETF XML" IETF XML Registry . . . . . . . . . . . . . . . . . 45
6.2. The "YANG YANG Module Names" Names Registry . . . . . . . . . . . . 45
7. References . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.1. Normative References . . . . . . . . . . . . . . . . . . 45
7.2. Informative References . . . . . . . . . . . . . . . . . 46
Appendix A. Change Log . . . . . . . . . . . . . . . . . . . . . 48
A.1. 00 to 01 . . . . . . . . . . . . . . . . . . . . . . . . 48
A.2. 01 to 02 . . . . . . . . . . . . . . . . . . . . . . . . 48
A.3. 02 to 03 . . . . . . . . . . . . . . . . . . . . . . . . 49
A.4. 03 to 04 . . . . . . . . . . . . . . . . . . . . . . . . 49
A.5. 04 to 05 . . . . . . . . . . . . . . . . . . . . . . . . 49
A.6. 05 to 06 . . . . . . . . . . . . . . . . . . . . . . . . 49
A.7. 06 to 07 . . . . . . . . . . . . . . . . . . . . . . . . 50
A.8. 07 to 08 . . . . . . . . . . . . . . . . . . . . . . . . 50
A.9. 08 to 09 . . . . . . . . . . . . . . . . . . . . . . . . 50
A.10. 09 to 10 . . . . . . . . . . . . . . . . . . . . . . . . 50
A.11. 10 to 11 . . . . . . . . . . . . . . . . . . . . . . . . 51
A.12. 11 to 12 . . . . . . . . . . . . . . . . . . . . . . . . 51
A.13. 12 to 13 . . . . . . . . . . . . . . . . . . . . . . . . 51
A.14. 13 to 14 . . . . . . . . . . . . . . . . . . . . . . . . 51
A.15. 14 to 15 . . . . . . . . . . . . . . . . . . . . . . . . 51
A.16. 15 to 16 . . . . . . . . . . . . . . . . . . . . . . . . 52
A.17. 16 to 17 . . . . . . . . . . . . . . . . . . . . . . . . 52
A.18. 17 to 18 . . . . . . . . . . . . . . . . . . . . . . . . 52
A.19. 18 to 19 . . . . . . . . . . . . . . . . . . . . . . . . 53
A.20. 19 to 20 . . . . . . . . . . . . . . . . . . . . . . . . 53
A.21. 20 to 21 . . . . . . . . . . . . . . . . . . . . . . . . 53
A.22. 21 to 22 . . . . . . . . . . . . . . . . . . . . . . . . 53
A.23. 22 to 23 . . . . . . . . . . . . . . . . . . . . . . . . 53
A.24. 23 to 24 . . . . . . . . . . . . . . . . . . . . . . . . 53
A.25. 24 to 25 . . . . . . . . . . . . . . . . . . . . . . . . 54
A.26. 25 to 26 . . . . . . . . . . . . . . . . . . . . . . . . 54
A.27. 26 to 27 . . . . . . . . . . . . . . . . . . . . . . . . 54
A.28. 27 to 28 . . . . . . . . . . . . . . . . . . . . . . . . 54
A.29. 28 to 29 . . . . . . . . . . . . . . . . . . . . . . . . 54
A.30. 29 to 30 . . . . . . . . . . . . . . . . . . . . . . . . 55
A.31. 30 to 31 . . . . . . . . . . . . . . . . . . . . . . . . 55
A.32. 31 to 33 . . . . . . . . . . . . . . . . . . . . . . . . 55
A.33. 33 to 34 . . . . . . . . . . . . . . . . . . . . . . . . 55
A.34. 34 to 35 . . . . . . . . . . . . . . . . . . . . . . . . 55
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 55
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 55
1. Introduction
This document presents a YANG 1.1 [RFC7950] module called "ietf-
keystore" that enables centralized configuration of both symmetric
and asymmetric keys. The secret value for both key types may be
encrypted or hidden (see [I-D.ietf-netconf-crypto-types]). [RFC9640]). Asymmetric keys may be
associated with certificates. Notifications are sent when
certificates are about to expire.
The "ietf-keystore" module defines many "grouping" statements
intended for use by other modules that may import it. For instance,
there are groupings that define enabling a key to be either configured
either inline (within the defining data model) or as a reference to a
key in the central keystore.
Special consideration has been given for servers that have
cryptographic hardware, such as a Trusted Platform Module trusted platform module (TPM).
These servers are unique in that the cryptographic hardware hides the
secret key values. Additionally, such hardware is commonly
initialized when manufactured to protect a "built-in" asymmetric key
for which its public half is conveyed in an identity certificate
(e.g., an IDevID Initial Device Identifier (IDevID) [Std-802.1AR-2018]
certificate). Please see
Section 3 to see See how built-in keys are supported. supported in Section 3.
This document is intended to reflect existing practices that many
server implementations support at the time of writing. To simplify
implementation, advanced key formats may be selectively implemented.
Implementations may utilize operating-system level keystore utilities
(e.g., "Keychain Access" on MacOS) and/or cryptographic hardware
(e.g., TPMs).
1.1. Relation to other Other RFCs
This document presents one or more a YANG modules module [RFC7950] that are is part of a
collection of RFCs that work together to, ultimately, to ultimately support the
configuration of both the clients and servers of both the
NETCONF Network
Configuration Protocol (NETCONF) [RFC6241] and RESTCONF [RFC8040] protocols. [RFC8040].
The dependency relationship between the primary YANG groupings
defined in the various RFCs is presented in the below diagram. diagram below. In
some cases, a draft document may define secondary groupings that introduce
dependencies not illustrated in the diagram. The labels in the
diagram are a shorthand name names for the defining RFC. RFCs. The citation
reference
references for the shorthand name is names are provided below the diagram.
Please note that the arrows in the diagram point from referencer to
referenced. For example, the "crypto-types" RFC does not have any
dependencies, whilst the "keystore" RFC depends on the "crypto-types"
RFC.
crypto-types
^ ^
/ \
/ \
truststore keystore
^ ^ ^ ^
| +---------+ | |
| | | |
| +------------+ |
tcp-client-server | / | |
^ ^ ssh-client-server | |
| | ^ tls-client-server
| | | ^ ^ http-client-server
| | | | | ^
| | | +-----+ +---------+ |
| | | | | |
| +-----------|--------|--------------+ | |
| | | | | |
+-----------+ | | | | |
| | | | | |
| | | | | |
netconf-client-server restconf-client-server
+======================+===========================================+
|Label
+========================+==========================+
| Label in Diagram | Originating RFC |
+======================+===========================================+
|crypto-types
+========================+==========================+
| crypto-types | [RFC9640] |
+------------------------+--------------------------+
| truststore | [RFC9641] |
+------------------------+--------------------------+
| keystore | RFC 9642 |
+------------------------+--------------------------+
| [I-D.ietf-netconf-crypto-types] tcp-client-server |
+----------------------+-------------------------------------------+
|truststore [RFC9643] | [I-D.ietf-netconf-trust-anchors]
+------------------------+--------------------------+
|
+----------------------+-------------------------------------------+
|keystore ssh-client-server | [I-D.ietf-netconf-keystore] [RFC9644] |
+----------------------+-------------------------------------------+
|tcp-client-server
+------------------------+--------------------------+
| [I-D.ietf-netconf-tcp-client-server] tls-client-server |
+----------------------+-------------------------------------------+
|ssh-client-server [RFC9645] | [I-D.ietf-netconf-ssh-client-server]
+------------------------+--------------------------+
|
+----------------------+-------------------------------------------+
|tls-client-server http-client-server | [I-D.ietf-netconf-tls-client-server] [HTTP-CLIENT-SERVER] |
+----------------------+-------------------------------------------+
|http-client-server
+------------------------+--------------------------+
| [I-D.ietf-netconf-http-client-server] netconf-client-server |
+----------------------+-------------------------------------------+
|netconf-client-server [NETCONF-CLIENT-SERVER] | [I-D.ietf-netconf-netconf-client-server]
+------------------------+--------------------------+
|
+----------------------+-------------------------------------------+
|restconf-client-server| [I-D.ietf-netconf-restconf-client-server] restconf-client-server |
+----------------------+-------------------------------------------+ [RESTCONF-CLIENT-SERVER] |
+------------------------+--------------------------+
Table 1: Label Labels in Diagram to RFC Mapping
1.2. Specification Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
1.3. Terminology
The terms "client" and "server" are defined in [RFC6241] and are not
redefined here.
The term "keystore" is defined in this document as a mechanism that
intends to safeguard secrets.
The nomenclature nomenclatures "<running>" and "<operational>" are defined in
[RFC8342].
The sentence fragments "augmented" and "augmented in" are used herein
as the past tense verbified form of the "augment" statement defined
in Section 7.17 of [RFC7950].
The term "key" may be used to mean one of three things in this
document: 1) the YANG-defined "asymmetric-key" or "symmetric-key"
node defined in this document, 2) the raw key data possessed by the
aforementioned key nodes, and or 3) the "key" of a YANG "list" statement.
This document attempts to always qualify qualifies types '2' and '3' using, using "raw key value" and
"YANG list key" where needed. In all other cases, an unqualified
"key" refers to a YANG-defined "asymmetric-key" or "symmetric-key"
node.
1.4. Adherence to the NMDA
This document is compliant with Network Management Datastore
Architecture (NMDA) [RFC8342]. For instance, keys and associated
certificates installed during manufacturing (e.g., for an IDevID
certificate) are expected to appear in <operational> (see Section 3).
1.5. Conventions
Various examples in this document use "BASE64VALUE=" as a placeholder
value for binary data that has been base64 encoded (per Section 9.8
of [RFC7950]). This placeholder value is used because real base64
encoded
base64-encoded structures are often many lines long and hence
distracting to the example being presented.
Various examples in this document use the XML [W3C.REC-xml-20081126]
encoding. Other encodings, such as JSON [RFC8259], could
alternatively be used.
Various examples in this document contain long lines that may be
folded, as described in [RFC8792].
This document uses the adjective "central" to the word "keystore" to
refer to the top-level instance of the "keystore-grouping", when the
"central-keystore-supported" feature is enabled. Please be aware
that consuming YANG modules MAY instantiate the "keystore-grouping"
in other locations. All such other instances are not the "central"
instance.
2. The "ietf-keystore" Module
This section defines a YANG 1.1 [RFC7950] module called "ietf-
keystore". A high-level overview of the module is provided in
Section 2.1. Examples illustrating the module's use are provided in
Section 2.2. The YANG module itself is defined in Section 2.3.
2.1. Data Model Overview
This section provides an overview of the "ietf-keystore" module in
terms of its features, typedefs, groupings, and protocol-accessible
nodes.
2.1.1. Features
The following diagram lists all the "feature" statements defined in
the "ietf-keystore" module:
Features:
+-- central-keystore-supported
+-- inline-definitions-supported
+-- asymmetric-keys
+-- symmetric-keys
The diagram above uses syntax that is similar to but not defined in
[RFC8340].
2.1.2. Typedefs
The following diagram lists the "typedef" statements defined in the
"ietf-keystore" module:
Typedefs:
leafref
+-- central-symmetric-key-ref
+-- central-asymmetric-key-ref
The diagram above uses syntax that is similar to but not defined in
[RFC8340].
Comments:
* All the typedefs defined in the "ietf-keystore" module extend the
base "leafref" type defined in [RFC7950].
* The leafrefs refer to symmetric and asymmetric keys in the central
keystore,
keystore when this module is implemented.
* These typedefs are provided as an aid to consuming modules that
import the "ietf-keystore" module.
2.1.3. Groupings
The "ietf-keystore" module defines the following "grouping"
statements:
* encrypted-by-grouping
* central-asymmetric-key-certificate-ref-grouping
* inline-or-keystore-symmetric-key-grouping
* inline-or-keystore-asymmetric-key-grouping
* inline-or-keystore-asymmetric-key-with-certs-grouping
* inline-or-keystore-end-entity-cert-with-key-grouping
* keystore-grouping
Each of these groupings are presented in the following subsections.
2.1.3.1. The "encrypted-by-grouping" Grouping
The following tree diagram [RFC8340] illustrates the "encrypted-by-
grouping" grouping:
grouping encrypted-by-grouping:
+-- (encrypted-by)
+--:(central-symmetric-key-ref)
| {central-keystore-supported,symmetric-keys}?
| +-- symmetric-key-ref? ks:central-symmetric-key-ref
+--:(central-asymmetric-key-ref)
{central-keystore-supported,asymmetric-keys}?
+-- asymmetric-key-ref? ks:central-asymmetric-key-ref
Comments:
* This grouping defines a "choice" statement with options to
reference either a symmetric or an asymmetric key configured in
the keystore.
* This grouping is usable only when the keystore module is
implemented. Servers defining custom keystore locations MUST
augment in alternate "encrypted-by" references to the alternate
locations.
2.1.3.2. The "central-asymmetric-key-certificate-ref-grouping" Grouping
The following tree diagram [RFC8340] illustrates the "central-
asymmetric-key-certificate-ref-grouping" grouping:
grouping central-asymmetric-key-certificate-ref-grouping:
+-- asymmetric-key? ks:central-asymmetric-key-ref
| {central-keystore-supported,asymmetric-keys}?
+-- certificate? leafref
Comments:
* This grouping defines a reference to a certificate in two parts:
the first being the name of the asymmetric key the certificate is
associated with, and the second being the name of the certificate
itself.
* This grouping is usable only when the keystore module is
implemented. Servers defining custom keystore locations can
define an alternate grouping for references to the alternate
locations.
2.1.3.3. The "inline-or-keystore-symmetric-key-grouping" Grouping
The following tree diagram [RFC8340] illustrates the "inline-or-
keystore-symmetric-key-grouping" grouping:
grouping inline-or-keystore-symmetric-key-grouping:
+-- (inline-or-keystore)
+--:(inline) {inline-definitions-supported}?
| +-- inline-definition
| +---u ct:symmetric-key-grouping
+--:(central-keystore)
{central-keystore-supported,symmetric-keys}?
+-- central-keystore-reference?
ks:central-symmetric-key-ref
Comments:
* The "inline-or-keystore-symmetric-key-grouping" grouping is
provided solely as convenience to consuming modules that wish to
offer an option for whether a symmetric key that is defined either inline
or as a reference to a symmetric key in the keystore.
* A "choice" statement is used to expose the various options. Each
option is enabled by a "feature" statement. Additional "case"
statements MAY be augmented in if, e.g., there is a need to
reference a symmetric key in an alternate location.
* For the "inline-definition" option, the definition uses the
"symmetric-key-grouping" grouping discussed in Section 2.1.4.3 of
[I-D.ietf-netconf-crypto-types].
[RFC9640].
* For the "central-keystore" option, the "central-keystore-
reference" is an instance of the "symmetric-key-ref" discussed in
Section 2.1.2.
2.1.3.4. The "inline-or-keystore-asymmetric-key-grouping" Grouping
The following tree diagram [RFC8340] illustrates the "inline-or-
keystore-asymmetric-key-grouping" grouping:
grouping inline-or-keystore-asymmetric-key-grouping:
+-- (inline-or-keystore)
+--:(inline) {inline-definitions-supported}?
| +-- inline-definition
| +---u ct:asymmetric-key-pair-grouping
+--:(central-keystore)
{central-keystore-supported,asymmetric-keys}?
+-- central-keystore-reference?
ks:central-asymmetric-key-ref
Comments:
* The "inline-or-keystore-asymmetric-key-grouping" grouping is
provided solely as convenience to consuming modules that wish to
offer an option for whether an asymmetric key that is defined either
inline or as a reference to an asymmetric key in the keystore.
* A "choice" statement is used to expose the various options. Each
option is enabled by a "feature" statement. Additional "case"
statements MAY be augmented in if, e.g., there is a need to
reference an asymmetric key in an alternate location.
* For the "inline-definition" option, the definition uses the
"asymmetric-key-pair-grouping" grouping discussed in
Section 2.1.4.6 of [I-D.ietf-netconf-crypto-types]. [RFC9640].
* For the "central-keystore" option, the "central-keystore-
reference" is an instance of the "asymmetric-key-ref" typedef
discussed in Section 2.1.2.
2.1.3.5. The "inline-or-keystore-asymmetric-key-with-certs-grouping"
Grouping
The following tree diagram [RFC8340] illustrates the "inline-or-
keystore-asymmetric-key-with-certs-grouping" grouping:
grouping inline-or-keystore-asymmetric-key-with-certs-grouping:
+-- (inline-or-keystore)
+--:(inline) {inline-definitions-supported}?
| +-- inline-definition
| +---u ct:asymmetric-key-pair-with-certs-grouping
+--:(central-keystore)
{central-keystore-supported,asymmetric-keys}?
+-- central-keystore-reference?
ks:central-asymmetric-key-ref
Comments:
* The "inline-or-keystore-asymmetric-key-with-certs-grouping"
grouping is provided solely as convenience to consuming modules
that wish to offer an option for whether an asymmetric key that is defined
either inline or as a reference to an asymmetric key in the
keystore.
* A "choice" statement is used to expose the various options. Each
option is enabled by a "feature" statement. Additional "case"
statements MAY be augmented in if, e.g., there is a need to
reference an asymmetric key in an alternate location.
* For the "inline-definition" option, the definition uses the
"asymmetric-key-pair-with-certs-grouping" grouping discussed in
Section 2.1.4.12 of [I-D.ietf-netconf-crypto-types]. [RFC9640].
* For the "central-keystore" option, the "central-keystore-
reference" is an instance of the "asymmetric-key-ref" typedef
discussed in Section 2.1.2.
2.1.3.6. The "inline-or-keystore-end-entity-cert-with-key-grouping"
Grouping
The following tree diagram [RFC8340] illustrates the "inline-or-
keystore-end-entity-cert-with-key-grouping" grouping:
grouping inline-or-keystore-end-entity-cert-with-key-grouping:
+-- (inline-or-keystore)
+--:(inline) {inline-definitions-supported}?
| +-- inline-definition
| +---u ct:asymmetric-key-pair-with-cert-grouping
+--:(central-keystore)
{central-keystore-supported,asymmetric-keys}?
+-- central-keystore-reference
+---u central-asymmetric-key-certificate-ref-grouping
Comments:
* The "inline-or-keystore-end-entity-cert-with-key-grouping"
grouping is provided solely as convenience to consuming modules
that wish to offer an option for whether a symmetric key that is defined
either inline or as a reference to a symmetric key in the
keystore.
* A "choice" statement is used to expose the various options. Each
option is enabled by a "feature" statement. Additional "case"
statements MAY be augmented in if, e.g., there is a need to
reference a symmetric key in an alternate location.
* For the "inline-definition" option, the definition uses the
"asymmetric-key-pair-with-certs-grouping" grouping discussed in
Section 2.1.4.12 of [I-D.ietf-netconf-crypto-types]. [RFC9640].
* For the "central-keystore" option, the "central-keystore-
reference" uses the "central-asymmetric-key-certificate-ref-
grouping" grouping discussed in Section 2.1.3.2.
2.1.3.7. The "keystore-grouping" Grouping
The following tree diagram [RFC8340] illustrates the "keystore-
grouping" grouping:
grouping keystore-grouping:
+-- asymmetric-keys {asymmetric-keys}?
| +-- asymmetric-key* [name]
| +-- name? name string
| +---u ct:asymmetric-key-pair-with-certs-grouping
+-- symmetric-keys {symmetric-keys}?
+-- symmetric-key* [name]
+-- name? name string
+---u ct:symmetric-key-grouping
Comments:
* The "keystore-grouping" grouping defines a keystore instance as
being composed of symmetric and asymmetric keys. The structure
for the symmetric and asymmetric keys is essentially the same,
being same: a
"list" inside a "container".
* For asymmetric keys, each "asymmetric-key" uses the "asymmetric-
key-pair-with-certs-grouping" grouping discussed in
Section 2.1.4.12 of [I-D.ietf-netconf-crypto-types]. [RFC9640].
* For symmetric keys, each "symmetric-key" uses the "symmetric-key-
grouping" grouping discussed in Section 2.1.4.3 of
[I-D.ietf-netconf-crypto-types]. [RFC9640].
2.1.4. Protocol-accessible Protocol-Accessible Nodes
The following tree diagram [RFC8340] lists all the protocol-
accessible nodes defined in the "ietf-keystore" module, module without
expanding the "grouping" statements:
module: ietf-keystore
+--rw keystore {central-keystore-supported}?
+---u keystore-grouping
The following tree diagram [RFC8340] lists all the protocol-
accessible nodes defined in the "ietf-keystore" module, with all
"grouping" statements expanded, enabling the keystore's full
structure to be seen: seen.
=============== NOTE: '\' line wrapping per RFC 8792 ================
module: ietf-keystore
+--rw keystore {central-keystore-supported}?
+--rw asymmetric-keys {asymmetric-keys}?
| +--rw asymmetric-key* [name]
| +--rw name string
| +--rw public-key-format? identityref
| +--rw public-key? binary
| +--rw private-key-format? identityref
| +--rw (private-key-type)
| | +--:(cleartext-private-key) {cleartext-private-keys}?
| | | +--rw cleartext-private-key? binary
| | +--:(hidden-private-key) {hidden-private-keys}?
| | | +--rw hidden-private-key? empty
| | +--:(encrypted-private-key) {encrypted-private-keys}?
| | +--rw encrypted-private-key
| | +--rw encrypted-by
| | | +--rw (encrypted-by)
| | | +--:(central-symmetric-key-ref)
| | | | {central-keystore-supported,symme\
tric-keys}?
| | | | +--rw symmetric-key-ref?
| | | | ks:central-symmetric-key-ref
| | | +--:(central-asymmetric-key-ref)
| | | {central-keystore-supported,asymm\
etric-keys}?
| | | +--rw asymmetric-key-ref?
| | | ks:central-asymmetric-key-ref
| | +--rw encrypted-value-format identityref
| | +--rw encrypted-value binary
| +--rw certificates
| | +--rw certificate* [name]
| | +--rw name string
| | +--rw cert-data end-entity-cert-cms
| | +---n certificate-expiration
| | {certificate-expiration-notification}?
| | +-- expiration-date yang:date-and-time
| +---x generate-csr {csr-generation}?
| +---w input
| | +---w csr-format identityref
| | +---w csr-info csr-info
| +--ro output
| +--ro (csr-type)
| +--:(p10-csr)
| +--ro p10-csr? p10-csr
+--rw symmetric-keys {symmetric-keys}?
+--rw symmetric-key* [name]
+--rw name string
+--rw key-format? identityref
+--rw (key-type)
+--:(cleartext-symmetric-key)
| +--rw cleartext-symmetric-key? binary
| {cleartext-symmetric-keys}?
+--:(hidden-symmetric-key) {hidden-symmetric-keys}?
| +--rw hidden-symmetric-key? empty
+--:(encrypted-symmetric-key)
{encrypted-symmetric-keys}?
+--rw encrypted-symmetric-key
+--rw encrypted-by
| +--rw (encrypted-by)
| +--:(central-symmetric-key-ref)
| | {central-keystore-supported,symme\
tric-keys}?
| | +--rw symmetric-key-ref?
| | ks:central-symmetric-key-ref
| +--:(central-asymmetric-key-ref)
| {central-keystore-supported,asymm\
etric-keys}?
| +--rw asymmetric-key-ref?
| ks:central-asymmetric-key-ref
+--rw encrypted-value-format identityref
+--rw encrypted-value binary
Comments:
* Protocol-accessible nodes are those nodes that are accessible when
the module is "implemented", as described in Section 5.6.5 of
[RFC7950].
* The protocol-accessible nodes for the "ietf-keystore" module are
instances of the "keystore-grouping" grouping discussed in
Section 2.1.3.7.
* The top-level node "keystore" is additionally constrained by the
feature "central-keystore-supported".
* The "keystore-grouping" grouping is discussed in Section 2.1.3.7.
* The reason for why "keystore-grouping" exists separate from the
protocol-accessible nodes definition is so as to enable instances of the
keystore to be instantiated in other locations, as may be needed
or desired by some modules.
2.2. Example Usage
The examples in this section are encoded using XML, such as might be
the case when using the NETCONF protocol. Other encodings MAY be
used, such as JSON when using the RESTCONF protocol.
2.2.1. A Keystore Instance
The following example illustrates keys in <running>. Please see
Section 3 for an example illustrating built-in values in
<operational>.
=============== NOTE: '\' line wrapping per RFC 8792 ================
<keystore
xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">
<symmetric-keys>
<symmetric-key>
<name>cleartext-symmetric-key</name>
<key-format>ct:octet-string-key-format</key-format>
<cleartext-symmetric-key>BASE64VALUE=</cleartext-symmetric-\
key>
</symmetric-key>
<symmetric-key>
<name>hidden-symmetric-key</name>
<hidden-symmetric-key/>
</symmetric-key>
<symmetric-key>
<name>encrypted-symmetric-key</name>
<key-format>ct:one-symmetric-key-format</key-format>
<encrypted-symmetric-key>
<encrypted-by>
<asymmetric-key-ref>hidden-asymmetric-key</asymmetric-k\
ey-ref>
</encrypted-by>
<encrypted-value-format>ct:cms-enveloped-data-format</enc\
rypted-value-format>
<encrypted-value>BASE64VALUE=</encrypted-value>
</encrypted-symmetric-key>
</symmetric-key>
</symmetric-keys>
<asymmetric-keys>
<asymmetric-key>
<name>ssh-rsa-key</name>
<private-key-format>ct:rsa-private-key-format</private-key-\
format>
<cleartext-private-key>BASE64VALUE=</cleartext-private-key>
</asymmetric-key>
<asymmetric-key>
<name>ssh-rsa-key-with-cert</name>
<private-key-format>ct:rsa-private-key-format</private-key-\
format>
<cleartext-private-key>BASE64VALUE=</cleartext-private-key>
<certificates>
<certificate>
<name>ex-rsa-cert2</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</certificates>
</asymmetric-key>
<asymmetric-key>
<name>raw-private-key</name>
<private-key-format>ct:rsa-private-key-format</private-key-\
format>
<cleartext-private-key>BASE64VALUE=</cleartext-private-key>
</asymmetric-key>
<asymmetric-key>
<name>rsa-asymmetric-key</name>
<private-key-format>ct:rsa-private-key-format</private-key-\
format>
<cleartext-private-key>BASE64VALUE=</cleartext-private-key>
<certificates>
<certificate>
<name>ex-rsa-cert</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</certificates>
</asymmetric-key>
<asymmetric-key>
<name>ec-asymmetric-key</name>
<private-key-format>ct:ec-private-key-format</private-key-f\
ormat>
<cleartext-private-key>BASE64VALUE=</cleartext-private-key>
<certificates>
<certificate>
<name>ex-ec-cert</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</certificates>
</asymmetric-key>
<asymmetric-key>
<name>hidden-asymmetric-key</name>
<public-key-format>ct:subject-public-key-info-format</publi\
c-key-format>
<public-key>BASE64VALUE=</public-key>
<hidden-private-key/>
<certificates>
<certificate>
<name>builtin-idevid-cert</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
<certificate>
<name>my-ldevid-cert</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</certificates>
</asymmetric-key>
<asymmetric-key>
<name>encrypted-asymmetric-key</name>
<private-key-format>ct:one-asymmetric-key-format</private-k\
ey-format>
<encrypted-private-key>
<encrypted-by>
<symmetric-key-ref>encrypted-symmetric-key</symmetric-k\
ey-ref>
</encrypted-by>
<encrypted-value-format>ct:cms-encrypted-data-format</enc\
rypted-value-format>
<encrypted-value>BASE64VALUE=</encrypted-value>
</encrypted-private-key>
</asymmetric-key>
</asymmetric-keys>
</keystore>
2.2.2. A Certificate Expiration Notification
The following example illustrates a "certificate-expiration"
notification for a certificate associated with an asymmetric key
configured in the keystore.
=============== NOTE: '\' line wrapping per RFC 8792 ================
<notification
xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
<eventTime>2018-05-25T00:01:00Z</eventTime>
<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">
<asymmetric-keys>
<asymmetric-key>
<name>hidden-asymmetric-key</name>
<certificates>
<certificate>
<name>my-ldevid-cert</name>
<certificate-expiration>
<expiration-date>2018-08-05T14:18:53-05:00</expiration\
-date>
</certificate-expiration>
</certificate>
</certificates>
</asymmetric-key>
</asymmetric-keys>
</keystore>
</notification>
2.2.3. The "Local "Inline or Keystore" Groupings
This section illustrates the various "inline-or-keystore" groupings
defined in the "ietf-keystore" module, specifically the "inline-or-
keystore-symmetric-key-grouping" (Section 2.1.3.3), "inline-or-
keystore-asymmetric-key-grouping" (Section 2.1.3.4), "inline-or-
keystore-asymmetric-key-with-certs-grouping" (Section 2.1.3.5), and
"inline-or-keystore-end-entity-cert-with-key-grouping"
(Section 2.1.3.6) groupings.
These examples assume the existence of an example module called "ex-
keystore-usage" having that has the namespace "https://example.com/ns/example-
keystore-usage". "https://example.com/ns/
example-keystore-usage".
The ex-keystore-usage module is first presented using tree diagrams
[RFC8340], followed by an instance example illustrating all the
"inline-or-keystore" groupings in use, followed by the YANG module
itself.
2.2.3.1. Tree Diagrams for the "ex-keystore-usage" Module
The following tree diagram illustrates "ex-keystore-usage" without
expanding the "grouping" statements:
=============== NOTE: '\' line wrapping per RFC 8792 ================
module: ex-keystore-usage
+--rw keystore-usage
+--rw symmetric-key* [name]
| +--rw name string
| +---u ks:inline-or-keystore-symmetric-key-grouping
+--rw asymmetric-key* [name]
| +--rw name string
| +---u ks:inline-or-keystore-asymmetric-key-grouping
+--rw asymmetric-key-with-certs* [name]
| +--rw name
| | string
| +---u ks:inline-or-keystore-asymmetric-key-with-certs-groupi\
ng
+--rw end-entity-cert-with-key* [name]
+--rw name
| string
+---u ks:inline-or-keystore-end-entity-cert-with-key-grouping
The following tree diagram illustrates the "ex-keystore-usage"
module, module
with all "grouping" statements expanded, enabling the usage's full
structure to be seen:
=============== NOTE: '\' line wrapping per RFC 8792 ================
module: ex-keystore-usage
+--rw keystore-usage
+--rw symmetric-key* [name]
| +--rw name string
| +--rw (inline-or-keystore)
| +--:(inline) {inline-definitions-supported}?
| | +--rw inline-definition
| | +--rw key-format? identityref
| | +--rw (key-type)
| | +--:(cleartext-symmetric-key)
| | | +--rw cleartext-symmetric-key? binary
| | | {cleartext-symmetric-keys}?
| | +--:(hidden-symmetric-key)
| | | {hidden-symmetric-keys}?
| | | +--rw hidden-symmetric-key? empty
| | +--:(encrypted-symmetric-key)
| | {encrypted-symmetric-keys}?
| | +--rw encrypted-symmetric-key
| | +--rw encrypted-by
| | +--rw encrypted-value-format identityref
| | +--rw encrypted-value binary
| +--:(central-keystore)
| {central-keystore-supported,symmetric-keys}?
| +--rw central-keystore-reference?
| ks:central-symmetric-key-ref
+--rw asymmetric-key* [name]
| +--rw name string
| +--rw (inline-or-keystore)
| +--:(inline) {inline-definitions-supported}?
| | +--rw inline-definition
| | +--rw public-key-format? identityref
| | +--rw public-key? binary
| | +--rw private-key-format? identityref
| | +--rw (private-key-type)
| | +--:(cleartext-private-key)
| | | {cleartext-private-keys}?
| | | +--rw cleartext-private-key? binary
| | +--:(hidden-private-key) {hidden-private-keys}?
| | | +--rw hidden-private-key? empty
| | +--:(encrypted-private-key)
| | {encrypted-private-keys}?
| | +--rw encrypted-private-key
| | +--rw encrypted-by
| | +--rw encrypted-value-format identityref
| | +--rw encrypted-value binary
| +--:(central-keystore)
| {central-keystore-supported,asymmetric-keys}?
| +--rw central-keystore-reference?
| ks:central-asymmetric-key-ref
+--rw asymmetric-key-with-certs* [name]
| +--rw name string
| +--rw (inline-or-keystore)
| +--:(inline) {inline-definitions-supported}?
| | +--rw inline-definition
| | +--rw public-key-format? identityref
| | +--rw public-key? binary
| | +--rw private-key-format? identityref
| | +--rw (private-key-type)
| | | +--:(cleartext-private-key)
| | | | {cleartext-private-keys}?
| | | | +--rw cleartext-private-key? binary
| | | +--:(hidden-private-key) {hidden-private-keys}?
| | | | +--rw hidden-private-key? empty
| | | +--:(encrypted-private-key)
| | | {encrypted-private-keys}?
| | | +--rw encrypted-private-key
| | | +--rw encrypted-by
| | | +--rw encrypted-value-format identityref
| | | +--rw encrypted-value binary
| | +--rw certificates
| | | +--rw certificate* [name]
| | | +--rw name string
| | | +--rw cert-data
| | | | end-entity-cert-cms
| | | +---n certificate-expiration
| | | {certificate-expiration-notification}?
| | | +-- expiration-date yang:date-and-time
| | +---x generate-csr {csr-generation}?
| | +---w input
| | | +---w csr-format identityref
| | | +---w csr-info csr-info
| | +--ro output
| | +--ro (csr-type)
| | +--:(p10-csr)
| | +--ro p10-csr? p10-csr
| +--:(central-keystore)
| {central-keystore-supported,asymmetric-keys}?
| +--rw central-keystore-reference?
| ks:central-asymmetric-key-ref
+--rw end-entity-cert-with-key* [name]
+--rw name string
+--rw (inline-or-keystore)
+--:(inline) {inline-definitions-supported}?
| +--rw inline-definition
| +--rw public-key-format? identityref
| +--rw public-key? binary
| +--rw private-key-format? identityref
| +--rw (private-key-type)
| | +--:(cleartext-private-key)
| | | {cleartext-private-keys}?
| | | +--rw cleartext-private-key? binary
| | +--:(hidden-private-key) {hidden-private-keys}?
| | | +--rw hidden-private-key? empty
| | +--:(encrypted-private-key)
| | {encrypted-private-keys}?
| | +--rw encrypted-private-key
| | +--rw encrypted-by
| | +--rw encrypted-value-format identityref
| | +--rw encrypted-value binary
| +--rw cert-data?
| | end-entity-cert-cms
| +---n certificate-expiration
| | {certificate-expiration-notification}?
| | +-- expiration-date yang:date-and-time
| +---x generate-csr {csr-generation}?
| +---w input
| | +---w csr-format identityref
| | +---w csr-info csr-info
| +--ro output
| +--ro (csr-type)
| +--:(p10-csr)
| +--ro p10-csr? p10-csr
+--:(central-keystore)
{central-keystore-supported,asymmetric-keys}?
+--rw central-keystore-reference
+--rw asymmetric-key?
| ks:central-asymmetric-key-ref
| {central-keystore-supported,asymmetric-keys\
}?
+--rw certificate? leafref
2.2.3.2. Example Usage for the "ex-keystore-usage" Module
The following example provides two equivalent instances of each
grouping, the first being a reference to a keystore and the second
being inlined. The instance having a reference to a keystore is
consistent with the keystore defined in Section 2.2.1. The two
instances are equivalent, as the inlined instance example contains
the same values defined by the keystore instance referenced by its
sibling example.
=============== NOTE: '\' line wrapping per RFC 8792 ================
<keystore-usage
xmlns="https://example.com/ns/example-keystore-usage"
xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">
<!-- The following two equivalent examples illustrate the -->
<!-- "inline-or-keystore-symmetric-key-grouping" grouping: -->
<symmetric-key>
<name>example 1a</name>
<central-keystore-reference>cleartext-symmetric-key</central-key\
store-reference>
</symmetric-key>
<symmetric-key>
<name>example 1b</name>
<inline-definition>
<key-format>ct:octet-string-key-format</key-format>
<cleartext-symmetric-key>BASE64VALUE=</cleartext-symmetric-key>
</inline-definition>
</symmetric-key>
<!-- The following two equivalent examples illustrate the -->
<!-- "inline-or-keystore-asymmetric-key-grouping" grouping: -->
<asymmetric-key>
<name>example 2a</name>
<central-keystore-reference>rsa-asymmetric-key</central-keystore\
-reference>
</asymmetric-key>
<asymmetric-key>
<name>example 2b</name>
<inline-definition>
<public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
<public-key>BASE64VALUE=</public-key>
<private-key-format>ct:rsa-private-key-format</private-key-for\
mat>
<cleartext-private-key>BASE64VALUE=</cleartext-private-key>
</inline-definition>
</asymmetric-key>
<!-- the The following two equivalent examples illustrate the -->
<!-- "inline-or-keystore-asymmetric-key-with-certs-grouping": "inline-or-keystore-asymmetric-key-with-certs-grouping" -->
<!-- grouping: -->
<asymmetric-key-with-certs>
<name>example 3a</name>
<central-keystore-reference>rsa-asymmetric-key</central-keystore\
-reference>
</asymmetric-key-with-certs>
<asymmetric-key-with-certs>
<name>example 3b</name>
<inline-definition>
<public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
<public-key>BASE64VALUE=</public-key>
<private-key-format>ct:rsa-private-key-format</private-key-for\
mat>
<cleartext-private-key>BASE64VALUE=</cleartext-private-key>
<certificates>
<certificate>
<name>a locally-defined locally defined cert</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</certificates>
</inline-definition>
</asymmetric-key-with-certs>
<!-- The following two equivalent examples illustrate the -->
<!-- "inline-or-keystore-end-entity-cert-with-key-grouping": "inline-or-keystore-end-entity-cert-with-key-grouping" -->
<!-- grouping: -->
<end-entity-cert-with-key>
<name>example 4a</name>
<central-keystore-reference>
<asymmetric-key>rsa-asymmetric-key</asymmetric-key>
<certificate>ex-rsa-cert</certificate>
</central-keystore-reference>
</end-entity-cert-with-key>
<end-entity-cert-with-key>
<name>example 4b</name>
<inline-definition>
<public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
<public-key>BASE64VALUE=</public-key>
<private-key-format>ct:rsa-private-key-format</private-key-for\
mat>
<cleartext-private-key>BASE64VALUE=</cleartext-private-key>
<cert-data>BASE64VALUE=</cert-data>
</inline-definition>
</end-entity-cert-with-key>
</keystore-usage>
2.2.3.3. The "ex-keystore-usage" YANG Module
Following is the "ex-keystore-usage" module's YANG definition:
module ex-keystore-usage {
yang-version 1.1;
namespace "https://example.com/ns/example-keystore-usage";
prefix ex-keystore-usage;
import ietf-keystore {
prefix ks;
reference
"RFC CCCC: 9642: A YANG Data Model for a Keystore";
}
organization
"Example Corporation";
contact
"Author: YANG Designer <mailto:yang.designer@example.com>";
description
"This example module illustrates notable groupings defined
in the 'ietf-keystore' module.";
revision 2024-03-16 {
description
"Initial version";
reference
"RFC CCCC: 9642: A YANG Data Model for a Keystore";
}
container keystore-usage {
description
"An illustration of the various keystore groupings.";
list symmetric-key {
key "name";
leaf name {
type string;
description
"An arbitrary name for this key.";
}
uses ks:inline-or-keystore-symmetric-key-grouping;
description
"An symmetric key that may be configured locally or be a
reference to a symmetric key in the keystore.";
}
list asymmetric-key {
key "name";
leaf name {
type string;
description
"An arbitrary name for this key.";
}
uses ks:inline-or-keystore-asymmetric-key-grouping;
description
"An asymmetric key, with no certs, that may be configured
locally or be a reference to an asymmetric key in the
keystore. The intent is to reference just the asymmetric
key, not any certificates that may also be associated
with the asymmetric key.";
}
list asymmetric-key-with-certs {
key "name";
leaf name {
type string;
description
"An arbitrary name for this key.";
}
uses ks:inline-or-keystore-asymmetric-key-with-certs-grouping;
description
"An asymmetric key and its associated certs, certs that may be
configured locally or be a reference to an asymmetric
key (and its associated certs) in the keystore.";
}
list end-entity-cert-with-key {
key "name";
leaf name {
type string;
description
"An arbitrary name for this key.";
}
uses ks:inline-or-keystore-end-entity-cert-with-key-grouping;
description
"An end-entity certificate and its associated asymmetric
key,
key that may be configured locally or be a reference
to another certificate (and its associated asymmetric
key) in the keystore.";
}
}
}
2.3. YANG Module
This YANG module has normative references to [RFC8341] and
[I-D.ietf-netconf-crypto-types]. [RFC9640].
<CODE BEGINS> file "ietf-keystore@2024-03-16.yang"
module ietf-keystore {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-keystore";
prefix ks;
import ietf-netconf-acm {
prefix nacm;
reference
"RFC 8341: Network Configuration Access Control Model";
}
import ietf-crypto-types {
prefix ct;
reference
"RFC AAAA: 9640: YANG Data Types and Groupings for Cryptography";
}
organization
"IETF NETCONF (Network Configuration) Working Group";
contact
"WG Web: https://datatracker.ietf.org/wg/netconf
WG List: NETCONF WG list <mailto:netconf@ietf.org>
Author: Kent Watsen <mailto:kent+ietf@watsen.net>";
description
"This module defines a 'keystore' to centralize management
of security credentials.
The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
are to be interpreted as described in BCP 14 (RFC 2119)
(RFC 8174) when, and only when, they appear in all
capitals, as shown here.
Copyright (c) 2024 IETF Trust and the persons identified
as authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with
or without modification, is permitted pursuant to, and
subject to the license terms contained in, the Revised
BSD License set forth in Section 4.c of the IETF Trust's
Legal Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC CCCC
(https://www.rfc-editor.org/info/rfcCCCC); 9642
(https://www.rfc-editor.org/info/rfc9642); see the RFC
itself for full legal notices.
The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
are to be interpreted as described in BCP 14 (RFC 2119)
(RFC 8174) when, and only when, they appear in all
capitals, as shown here."; notices.";
revision 2024-03-16 {
description
"Initial version";
reference
"RFC CCCC: 9642: A YANG Data Model for a Keystore";
}
/****************/
/* Features */
/****************/
feature central-keystore-supported {
description
"The 'central-keystore-supported' feature indicates that
the server supports the central keystore (i.e., fully
implements the 'ietf-keystore' module).";
}
feature inline-definitions-supported {
description
"The 'inline-definitions-supported' feature indicates that
the server supports locally-defined locally defined keys.";
}
feature asymmetric-keys {
description
"The 'asymmetric-keys' feature indicates that the server
implements the /keystore/asymmetric-keys subtree.";
}
feature symmetric-keys {
description
"The 'symmetric-keys' feature indicates that the server
implements the /keystore/symmetric-keys subtree.";
}
/****************/
/* Typedefs */
/****************/
typedef central-symmetric-key-ref {
type leafref {
path "/ks:keystore/ks:symmetric-keys/ks:symmetric-key"
+ "/ks:name";
}
description
"This typedef enables modules to easily define a reference
to a symmetric key stored in the central keystore.";
}
typedef central-asymmetric-key-ref {
type leafref {
path "/ks:keystore/ks:asymmetric-keys/ks:asymmetric-key"
+ "/ks:name";
}
description
"This typedef enables modules to easily define a reference
to an asymmetric key stored in the central keystore.";
}
/*****************/
/* Groupings */
/*****************/
grouping encrypted-by-grouping {
description
"A grouping that defines a 'choice' statement that can be
augmented into the 'encrypted-by' node, present in the
'symmetric-key-grouping' and 'asymmetric-key-pair-grouping'
groupings defined in RFC AAAA, 9640, enabling references to keys
in the central keystore.";
choice encrypted-by {
nacm:default-deny-write;
mandatory true;
description
"A choice amongst other symmetric or asymmetric keys.";
case central-symmetric-key-ref {
if-feature "central-keystore-supported";
if-feature "symmetric-keys";
leaf symmetric-key-ref {
type ks:central-symmetric-key-ref;
description
"Identifies the symmetric key used to encrypt the
associated key.";
}
}
case central-asymmetric-key-ref {
if-feature "central-keystore-supported";
if-feature "asymmetric-keys";
leaf asymmetric-key-ref {
type ks:central-asymmetric-key-ref;
description
"Identifies the asymmetric key whose public key
encrypted the associated key.";
}
}
}
}
// *-ref groupings
grouping central-asymmetric-key-certificate-ref-grouping {
description
"Grouping
"A grouping for the reference to a certificate associated
with an asymmetric key stored in the central keystore.";
leaf asymmetric-key {
nacm:default-deny-write;
if-feature "central-keystore-supported";
if-feature "asymmetric-keys";
type ks:central-asymmetric-key-ref;
must '../certificate';
description
"A reference to an asymmetric key in the keystore.";
}
leaf certificate {
nacm:default-deny-write;
type leafref {
path "/ks:keystore/ks:asymmetric-keys/ks:asymmetric-key"
+ "[ks:name = current()/../asymmetric-key]/"
+ "ks:certificates/ks:certificate/ks:name";
}
must '../asymmetric-key';
description
"A reference to a specific certificate of the
asymmetric key in the keystore.";
}
}
// inline-or-keystore-* groupings
grouping inline-or-keystore-symmetric-key-grouping {
description
"A grouping for the configuration of a symmetric key. The
symmetric key may be defined inline or as a reference to
a symmetric key stored in the central keystore.
Servers that wish to define alternate keystore locations
SHOULD augment in custom 'case' statements enabling
references to those alternate keystore locations.";
choice inline-or-keystore {
nacm:default-deny-write;
mandatory true;
description
"A choice between an inlined definition and a definition
that exists in the keystore.";
case inline {
if-feature "inline-definitions-supported";
container inline-definition {
description
"Container
"A container to hold the local key definition.";
uses ct:symmetric-key-grouping;
}
}
case central-keystore {
if-feature "central-keystore-supported";
if-feature "symmetric-keys";
leaf central-keystore-reference {
type ks:central-symmetric-key-ref;
description
"A reference to an a symmetric key that exists in
the central keystore.";
}
}
}
}
grouping inline-or-keystore-asymmetric-key-grouping {
description
"A grouping for the configuration of an asymmetric key. The
asymmetric key may be defined inline or as a reference to
an asymmetric key stored in the central keystore.
Servers that wish to define alternate keystore locations
SHOULD augment in custom 'case' statements enabling
references to those alternate keystore locations.";
choice inline-or-keystore {
nacm:default-deny-write;
mandatory true;
description
"A choice between an inlined definition and a definition
that exists in the keystore.";
case inline {
if-feature "inline-definitions-supported";
container inline-definition {
description
"Container
"A container to hold the local key definition.";
uses ct:asymmetric-key-pair-grouping;
}
}
case central-keystore {
if-feature "central-keystore-supported";
if-feature "asymmetric-keys";
leaf central-keystore-reference {
type ks:central-asymmetric-key-ref;
description
"A reference to an asymmetric key that exists in
the central keystore. The intent is to reference
just the asymmetric key without any regard for
any certificates that may be associated with it.";
}
}
}
}
grouping inline-or-keystore-asymmetric-key-with-certs-grouping {
description
"A grouping for the configuration of an asymmetric key and
its associated certificates. The asymmetric key and its
associated certificates may be defined inline or as a
reference to an asymmetric key (and its associated
certificates) in the central keystore.
Servers that wish to define alternate keystore locations
SHOULD augment in custom 'case' statements enabling
references to those alternate keystore locations.";
choice inline-or-keystore {
nacm:default-deny-write;
mandatory true;
description
"A choice between an inlined definition and a definition
that exists in the keystore.";
case inline {
if-feature "inline-definitions-supported";
container inline-definition {
description
"Container
"A container to hold the local key definition.";
uses ct:asymmetric-key-pair-with-certs-grouping;
}
}
case central-keystore {
if-feature "central-keystore-supported";
if-feature "asymmetric-keys";
leaf central-keystore-reference {
type ks:central-asymmetric-key-ref;
description
"A reference to an asymmetric-key asymmetric key (and all of its
associated certificates) in the keystore, when
this module is implemented.";
}
}
}
}
grouping inline-or-keystore-end-entity-cert-with-key-grouping {
description
"A grouping for the configuration of an asymmetric key and
its associated end-entity certificate. The asymmetric key
and its associated end-entity certificate may be defined
inline or as a reference to an asymmetric key (and its
associated end-entity certificate) in the central keystore.
Servers that wish to define alternate keystore locations
SHOULD augment in custom 'case' statements enabling
references to those alternate keystore locations.";
choice inline-or-keystore {
nacm:default-deny-write;
mandatory true;
description
"A choice between an inlined definition and a definition
that exists in the keystore.";
case inline {
if-feature "inline-definitions-supported";
container inline-definition {
description
"Container
"A container to hold the local key definition.";
uses ct:asymmetric-key-pair-with-cert-grouping;
}
}
case central-keystore {
if-feature "central-keystore-supported";
if-feature "asymmetric-keys";
container central-keystore-reference {
uses central-asymmetric-key-certificate-ref-grouping;
description
"A reference to a specific certificate associated with
an asymmetric key stored in the central keystore.";
}
}
}
}
// the keystore grouping
grouping keystore-grouping {
description
"Grouping
"A grouping definition enables use in other contexts. If ever
done, implementations MUST augment new 'case' statements
into the various inline-or-keystore 'choice' statements to
supply leafrefs to the model-specific location(s).";
container asymmetric-keys {
nacm:default-deny-write;
if-feature "asymmetric-keys";
description
"A list of asymmetric keys.";
list asymmetric-key {
key "name";
description
"An asymmetric key.";
leaf name {
type string;
description
"An arbitrary name for the asymmetric key.";
}
uses ct:asymmetric-key-pair-with-certs-grouping;
}
}
container symmetric-keys {
nacm:default-deny-write;
if-feature "symmetric-keys";
description
"A list of symmetric keys.";
list symmetric-key {
key "name";
description
"A symmetric key.";
leaf name {
type string;
description
"An arbitrary name for the symmetric key.";
}
uses ct:symmetric-key-grouping;
}
}
}
/*********************************/
/* Protocol accessible nodes */
/*********************************/
container keystore {
if-feature central-keystore-supported; "central-keystore-supported";
description
"A central keystore containing a list of symmetric keys and
a list of asymmetric keys.";
nacm:default-deny-write;
uses keystore-grouping {
augment "symmetric-keys/symmetric-key/key-type/encrypted-"
+ "symmetric-key/encrypted-symmetric-key/encrypted-by" {
description
"Augments in a choice statement enabling the encrypting
key to be any other symmetric or asymmetric key in the
central keystore.";
uses encrypted-by-grouping;
}
augment "asymmetric-keys/asymmetric-key/private-key-type/"
+ "encrypted-private-key/encrypted-private-key/"
+ "encrypted-by" {
description
"Augments in a choice statement enabling the encrypting
key to be any other symmetric or asymmetric key in the
central keystore.";
uses encrypted-by-grouping;
}
}
}
}
<CODE ENDS>
3. Support for Built-in Built-In Keys
In some implementations, a server may support keys built into the
server. Built-in keys MAY be set during the manufacturing process or
be dynamically generated the first time the server is booted or a
particular service (e.g., SSH) Secure Shell (SSH)) is enabled.
Built-in keys are "hidden" keys expected to be set by a vendor-
specific process. Any ability for operators to set and/or modify
built-in keys is outside the scope of this document.
The primary characteristic of the built-in keys is that they are
provided by the server, as opposed to configuration. being configured. As such,
they are present in <operational> (Section 5.3 of [RFC8342]), [RFC8342]) and
<system>
[I-D.ietf-netmod-system-config], [NETMOD-SYSTEM-CONFIG], if implemented.
The example below illustrates what the keystore in <operational>
might look like for a server in its factory default state. Note that
the built-in keys have the "or:origin" annotation value "or:system".
=============== NOTE: '\' line wrapping per RFC 8792 ================
<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"
xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
or:origin="or:intended">
<asymmetric-keys>
<asymmetric-key or:origin="or:system">
<name>Manufacturer-Generated Hidden Key</name>
<public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
<public-key>BASE64VALUE=</public-key>
<hidden-private-key/>
<certificates>
<certificate>
<name>Manufacturer-Generated IDevID Cert</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</certificates>
</asymmetric-key>
</asymmetric-keys>
</keystore>
The following example illustrates how a single built-in key
definition from the previous example has been propagated to
<running>:
=============== NOTE: '\' line wrapping per RFC 8792 ================
<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">
<asymmetric-keys>
<asymmetric-key>
<name>Manufacturer-Generated Hidden Key</name>
<public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
<public-key>BASE64VALUE=</public-key>
<hidden-private-key/>
<certificates>
<certificate>
<name>Manufacturer-Generated IDevID Cert</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
<certificate>
<name>Deployment-Specific LDevID Cert</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</certificates>
</asymmetric-key>
</asymmetric-keys>
</keystore>
After the above configuration is applied, <operational> should appear
as follows:
=============== NOTE: '\' line wrapping per RFC 8792 ================
<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"
xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
or:origin="or:intended">
<asymmetric-keys>
<asymmetric-key or:origin="or:system">
<name>Manufacturer-Generated Hidden Key</name>
<public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
<public-key>BASE64VALUE=</public-key>
<hidden-private-key/>
<certificates>
<certificate>
<name>Manufacturer-Generated IDevID Cert</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
<certificate or:origin="or:intended">
<name>Deployment-Specific LDevID Cert</name>
<cert-data>BASE64VALUE=</cert-data>
</certificate>
</certificates>
</asymmetric-key>
</asymmetric-keys>
</keystore>
4. Encrypting Keys in Configuration
This section describes an approach that enables both the symmetric
and asymmetric keys on a server to be encrypted, such that
traditional backup/restore backup/
restore procedures can be used without concern for raw key data being
compromised when in transit.
The approach presented in this section is not normative. This
section answers how a configuration containing secrets that are
encrypted by a built-in key (Section 3) can be backup'ed backed up from one
server and restored on a different server, server when each server has unique master
primary keys. The API defined by the "ietf-keystore" YANG module
presented in this document is sufficient to support the workflow
described in this section.
4.1. Key Encryption Key
The ability to encrypt configured keys is predicated on the existence
of a "key key encryption key" key (KEK). There may be any number of KEKs in a
server. A KEK, by its namesake, is a key that is used to encrypt
other keys. A KEK MAY be either a symmetric key or an asymmetric
key.
If a KEK is a symmetric key, then the server MUST provide an API for
administrators to encrypt other keys without needing to know the
symmetric key's value. If the KEK is an asymmetric key, then the
server SHOULD provide an API enabling the encryption of other keys
or, alternatively, assume the administrators can do so themselves
using the asymmetric key's public half.
A server MUST possess access to the KEK, or an API using the KEK, so
that it can decrypt the other keys in the configuration at runtime.
4.2. Configuring Encrypted Keys
Each time a new key is configured, it SHOULD be encrypted by a KEK.
In the "ietf-crypto-types" [I-D.ietf-netconf-crypto-types], module [RFC9640], the format for encrypted
values is described by identity statements derived from the
"symmetrically-encrypted-value-format" and "asymmetrically-
encrypted-value-format" "asymmetrically-encrypted-
value-format" identity statements.
Implementations of servers implementing the "ietf-keystore" module
SHOULD provide an API that simultaneously generates a key and
encrypts the generated key using a KEK. Thus Thus, the cleartext value of
the newly generated key may never be known to the administrators
generating the keys. Such an API is defined in the "ietf-ssh-common"
and the "ietf-tls-common" YANG modules defined in
[I-D.ietf-netconf-ssh-client-server], [RFC9644] and
[I-D.ietf-netconf-tls-client-server],
[RFC9645], respectively.
In case the server implementation does not provide such an API, then
the generating and encrypting steps MAY be performed outside the
server, e.g., by an administrator with special access control rights
(e.g.,
(such as an organization's crypto officer).
In either case, the encrypted key can be configured into the keystore
using either the "encrypted-symmetric-key" (for symmetric keys) or
the "encrypted-private-key" (for asymmetric keys) nodes. These two
nodes contain both the encrypted raw key value as well as a reference
to the KEK that encrypted the key.
4.3. Migrating Configuration to Another Server
When a KEK is used to encrypt other keys, migrating the configuration
to another server is only possible if the second server has the same
KEK. How the second server comes to have the same KEK is discussed
in this section.
In some deployments, mechanisms outside the scope of this document
may be used to migrate a KEK from one server to another. That said,
beware that the ability to do so typically entails having access to
the first server but, server; however, in some scenarios, the first server may no
longer be operational.
In other deployments, an organization's crypto officer, possessing a
KEK's cleartext value, configures the same KEK on the second server,
presumably as a hidden key or a key protected by access-control, access control, so
that the cleartext value is not disclosed to regular administrators.
However, this approach creates high-coupling high coupling to and dependency on the
crypto officers that does not scale in production environments.
In order to decouple the crypto officers from the regular
administrators, a special KEK, called the "master "primary key" (MK), (PK), may be
used.
A MK PK is commonly a globally-unique globally unique built-in (see Section 3)
asymmetric key. The private raw key value, due to its long lifetime,
is hidden (i.e., "hidden-private-key" in "hidden-private-key"; see Section 2.1.4.5. of
[I-D.ietf-netconf-crypto-types]).
[RFC9640]). The raw public key value is often contained in an
identity certificate (e.g., IDevID). How to configure a MK an PK during
the manufacturing process is outside the scope of this document.
Assuming the server has a MK, PK, the MK PK can be used to encrypt a "shared
KEK", which is then used to encrypt the keys configured by regular
administrators.
With this extra level of indirection, it is possible for a crypto
officer to encrypt the same KEK for a multiplicity of servers offline
using the public key contained in their identity certificates. The
crypto officer can then safely handoff hand off the encrypted KEKs to regular
administrators responsible for server installations, including
migrations.
In order to migrate the configuration from a first server, an
administrator would need to make just a single modification to the
configuration before loading it onto a second server, which is to
replace the encrypted KEK keystore entry from the first server with
the encrypted KEK for the second server. Upon doing this, the
configuration (containing many encrypted keys) can be loaded into the
second server while enabling the second server to decrypt all the
encrypted keys in the configuration.
The following diagram illustrates this idea:
+-------------+ +-------------+
| shared KEK | | shared KEK |
|(unencrypted)|-------------------------------> | (encrypted) |
+-------------+ encrypts offline using +-------------+
^ each server's MK PK |
| |
| |
| possesses \o |
+-------------- |\ |
/ \ shares with |
crypto +--------------------+
officer |
|
|
+----------------------+ | +----------------------+
| server-1 | | | server-2 |
| configuration | | | configuration |
| | | | |
| | | | |
| +----------------+ | | | +----------------+ |
| | MK-1 PK-1 | | | | | MK-2 PK-2 | |
| | (hidden) | | | | | (hidden) | |
| +----------------+ | | | +----------------+ |
| ^ | | | ^ |
| | | | | | |
| | | | | | |
| | encrypted | | | | encrypted |
| | by | | | | by |
| | | | | | |
| | | | | | |
| +----------------+ | | | +----------------+ |
| | shared KEK | | | | | shared KEK | |
| | (encrypted) | | v | | (encrypted) | |
| +----------------+ | | +----------------+ |
| ^ | regular | ^ |
| | | admin | | |
| | | | | |
| | encrypted | \o | | encrypted |
| | by | |\ | | by |
| | | / \ | | |
| | | | | |
| +----------------+ |----------------->| +----------------+ |
| | all other keys | | migrate | | all other keys | |
| | (encrypted) | | configuration | | (encrypted) | |
| +----------------+ | | +----------------+ |
| | | |
+----------------------+ +----------------------+
5. Security Considerations
5.1. Security of Data at Rest and in Motion
The YANG module defined in this document defines a mechanism called a
"keystore" that intends to protect its contents from unauthorized
disclosure and modification.
In order to satisfy the expectations of a "keystore", keystore, it is RECOMMENDED
that server implementations ensure that the keystore contents are
encrypted when persisted to non-volatile memory, memory and
ensure that the keystore
contents that have been decrypted in volatile memory are zeroized
when not in use.
The keystore contents may be encrypted either by either encrypting the
contents individually (e.g., using the "encrypted" value formats) or,
in case or
using persistence-layer-level encryption. If storing cleartext
values are used (which is NOT RECOMMENDED per Section 3.5 of [I-D.ietf-netconf-crypto-types]), then, e.g., disk-
level [RFC9640]), then
persistence-layer-level encryption may SHOULD be used. used to protect the data
at rest.
If the keystore contents are not encrypted when persisted, then
server implementations MUST ensure the persisted storage is
inaccessible.
5.2. Unconstrained Private Key Usage
This module enables the configuration of private keys without
constraints on their usage, e.g., what operations the key is allowed
to be used for (e.g., (such as signature, decryption, or both).
This module also does not constrain the usage of the associated
public keys, keys other than in the context of a configured certificate
(e.g., an identity certificate), in which case the key usage is
constrained by the certificate.
5.3. Security Considerations for the "ietf-keystore" YANG Module
This section follows is modeled after the template defined in Section 3.7.1
of [RFC8407].
The ietf-keystore YANG module defined in this document defines a data model that is designed
to be accessed via YANG based YANG-based management protocols, such as NETCONF
[RFC6241] and RESTCONF [RFC8040]. Both of these These protocols have mandatory-to-
implement secure transport layers (e.g., SSH, TLS) with mutual SSH [RFC4252], TLS
[RFC8446], and QUIC [RFC9000]) and mandatory-to-implement mutal
authentication.
The Network Configuration Access Control Model (NACM) [RFC8341]
provides the means to restrict access for particular users to a pre-configured
preconfigured subset of all available protocol operations and
content.
Please be aware that this YANG module uses groupings from other YANG
modules that define nodes that may be considered sensitive or
vulnerable in network environments. Please review the Security
Considerations for dependent YANG modules for information as to which
nodes may be considered sensitive or vulnerable in network
environments.
Some of the readable data nodes defined in this YANG module may be considered
sensitive or vulnerable in some network environments. It is thus
important to control read access (e.g., via get, get-config, or
notification) to these data nodes. The following These are the subtrees and data
nodes have particular and their sensitivity/vulnerability:
*
The "cleartext-symmetric-key" node:
The "cleartext-symmetric-key"
This node, imported from the "symmetric-key-grouping" grouping
defined in
[I-D.ietf-netconf-crypto-types] [RFC9640], is additionally sensitive to read operations
such that, in normal use cases, it should never be returned to a
client. For this reason, the NACM extension "default-deny-all"
was applied to it in
[I-D.ietf-netconf-crypto-types].
* [RFC9640].
The "cleartext-private-key" node:
The "cleartext-private-key" node
This node, defined in the "asymmetric-
key-pair-grouping" "asymmetric-key-pair-grouping" grouping defined
in
[I-D.ietf-netconf-crypto-types] [RFC9640], is additionally sensitive to read operations such
that, in normal use cases, it should never be returned to a
client. For this reason, the NACM extension "default-deny-all" is
applied to it in
[I-D.ietf-netconf-crypto-types]. [RFC9640].
All the writable data nodes defined by this YANG module, both in the
"grouping" statements as well as the protocol-accessible "keystore"
instance, may be considered sensitive or vulnerable in some network
environments. For instance, any modification to a key or reference
to a key may dramatically alter the implemented security policy. For
this reason, the NACM extension "default-deny-write" has been set for
all data nodes defined in this module.
This YANG module does not define any "rpc" or "action" statements,
and thus the security considerations for such is not provided here.
Built-in key types SHOULD be either hidden and/or encrypted (not cleartext).
If this is not possible, access control mechanisms like NACM SHOULD
be used to limit access to the key's secret data to only the most
trusted authorized clients (e.g., belonging to an
organization’s organization's
crypto officer).
6. IANA Considerations
6.1. The "IETF XML" IETF XML Registry
This document registers one
IANA has registered the following URI in the "ns" subregistry registry of the IETF
"IETF XML Registry Registry" [RFC3688]. Following the format in [RFC3688], the
following registration is requested:
URI: urn:ietf:params:xml:ns:yang:ietf-keystore
Registrant Contact: The IESG
XML: N/A, N/A; the requested URI is an XML namespace.
6.2. The "YANG YANG Module Names" Names Registry
This document registers one
IANA has registered the following YANG module in the YANG "YANG Module Names
Names" registry [RFC6020]. Following the format defined in [RFC6020], the following
registration is requested:
name: [RFC6020].
Name: ietf-keystore
namespace:
Maintained by IANA: N
Namespace: urn:ietf:params:xml:ns:yang:ietf-keystore
prefix:
Prefix: ks
reference:
Reference: RFC CCCC 9642
7. References
7.1. Normative References
[I-D.ietf-netconf-crypto-types]
Watsen, K., "YANG Data Types and Groupings for
Cryptography", Work in Progress, Internet-Draft, draft-
ietf-netconf-crypto-types-33, 1 March 2024,
<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
crypto-types-33>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC4252] Ylonen, T. and C. Lonvick, Ed., "The Secure Shell (SSH)
Authentication Protocol", RFC 4252, DOI 10.17487/RFC4252,
January 2006, <https://www.rfc-editor.org/info/rfc4252>.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
<https://www.rfc-editor.org/info/rfc6020>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
<https://www.rfc-editor.org/info/rfc7950>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
[RFC9000] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
Multiplexed and Secure Transport", RFC 9000,
DOI 10.17487/RFC9000, May 2021,
<https://www.rfc-editor.org/info/rfc9000>.
[RFC9640] Watsen, K., "YANG Data Types and Groupings for
Cryptography", RFC 9640, DOI 10.17487/RFC9640, August
2024, <https://www.rfc-editor.org/info/rfc9640>.
7.2. Informative References
[I-D.ietf-netconf-http-client-server]
[HTTP-CLIENT-SERVER]
Watsen, K., "YANG Groupings for HTTP Clients and HTTP
Servers", Work in Progress, Internet-Draft, draft-ietf-
netconf-http-client-server-19, 1 March 2024,
<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
http-client-server-19>.
[I-D.ietf-netconf-keystore]
Watsen, K., "A YANG Data Model for a Keystore and Keystore
Operations", Work in Progress, Internet-Draft, draft-ietf-
netconf-keystore-34, 1 March
netconf-http-client-server-23, 15 August 2024,
<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
keystore-34>.
[I-D.ietf-netconf-netconf-client-server]
http-client-server-23>.
[NETCONF-CLIENT-SERVER]
Watsen, K., "NETCONF Client and Server Models", Work in
Progress, Internet-Draft, draft-ietf-netconf-netconf-
client-server-35, 1 March 2024,
<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
netconf-client-server-35>.
[I-D.ietf-netconf-restconf-client-server]
Watsen, K., "RESTCONF Client and Server Models", Work in
Progress, Internet-Draft, draft-ietf-netconf-restconf-
client-server-35, 1 March 2024,
<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
restconf-client-server-35>.
[I-D.ietf-netconf-ssh-client-server]
Watsen, K., "YANG Groupings for SSH Clients and SSH
Servers", Work in Progress, Internet-Draft, draft-ietf-
netconf-ssh-client-server-39, 1 March 2024,
<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
ssh-client-server-39>.
[I-D.ietf-netconf-tcp-client-server]
Watsen, K. and M. Scharf, "YANG Groupings for TCP Clients
and TCP Servers", Work in Progress, Internet-Draft, draft-
ietf-netconf-tcp-client-server-23, 1 March 2024,
<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
tcp-client-server-23>.
[I-D.ietf-netconf-tls-client-server]
Watsen, K., "YANG Groupings for TLS Clients and TLS
Servers", Work in Progress, Internet-Draft, draft-ietf-
netconf-tls-client-server-40, 1 March 2024,
<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
tls-client-server-40>.
[I-D.ietf-netconf-trust-anchors]
Watsen, K., "A YANG Data Model for a Truststore", Work in
Progress, Internet-Draft, draft-ietf-netconf-trust-
anchors-27, 1 March
client-server-37, 14 August 2024,
<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
trust-anchors-27>.
[I-D.ietf-netmod-system-config]
netconf-client-server-37>.
[NETMOD-SYSTEM-CONFIG]
Ma, Q., Ed., Wu, Q., and C. Feng, "System-defined
Configuration", Work in Progress, Internet-Draft, draft-
ietf-netmod-system-config-05, 21 February
ietf-netmod-system-config-08, 18 June 2024,
<https://datatracker.ietf.org/doc/html/draft-ietf-netmod-
system-config-05>.
system-config-08>.
[RESTCONF-CLIENT-SERVER]
Watsen, K., "RESTCONF Client and Server Models", Work in
Progress, Internet-Draft, draft-ietf-netconf-restconf-
client-server-38, 14 August 2024,
<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-
restconf-client-server-38>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC6241] Enns, R.,
[RFC8259] Bray, T., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, "The JavaScript Object Notation (JSON) Data
Interchange Format", STD 90, RFC 8174, 8259,
DOI 10.17487/RFC8174,
May 10.17487/RFC8259, December 2017, <https://www.rfc-editor.org/info/rfc8174>.
<https://www.rfc-editor.org/info/rfc8259>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
and R. Wilton, "Network Management Datastore Architecture
(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
<https://www.rfc-editor.org/info/rfc8342>.
[RFC8407] Bierman, A., "Guidelines for Authors and Reviewers of
Documents Containing YANG Data Models", BCP 216, RFC 8407,
DOI 10.17487/RFC8407, October 2018,
<https://www.rfc-editor.org/info/rfc8407>.
[RFC8792] Watsen, K., Auerswald, E., Farrel, A., and Q. Wu,
"Handling Long Lines in Content of Internet-Drafts and
RFCs", RFC 8792, DOI 10.17487/RFC8792, June 2020,
<https://www.rfc-editor.org/info/rfc8792>.
[RFC9641] Watsen, K., "A YANG Data Model for a Truststore",
RFC 9641, DOI 10.17487/RFC9641, August 2024,
<https://www.rfc-editor.org/info/rfc9641>.
[RFC9643] Watsen, K. and M. Scharf, "YANG Groupings for TCP Clients
and TCP Servers", RFC 9643, DOI 10.17487/RFC9643, August
2024, <https://www.rfc-editor.org/info/rfc9643>.
[RFC9644] Watsen, K., "YANG Groupings for SSH Clients and SSH
Servers", RFC 9644, DOI 10.17487/RFC9644, August 2024,
<https://www.rfc-editor.org/info/rfc9644>.
[RFC9645] Watsen, K., "YANG Groupings for TLS Clients and TLS
Servers", RFC 9645, DOI 10.17487/RFC9645, August 2024,
<https://www.rfc-editor.org/info/rfc9645>.
[Std-802.1AR-2018]
IEEE SA-Standards Board,
IEEE, "IEEE Standard for Local and
metropolitan area networks Metropolitan Area
Networks - Secure Device Identity", IEEE Std 802.1AR-2018,
DOI 10.1109/IEEESTD.2018.8423794, August 2018,
<https://standards.ieee.org/standard/802_1AR-2018.html>.
[W3C.REC-xml-20081126]
Bray, T., Paoli, J., Sperberg-McQueen, C. M., Maler, E.,
and F. Yergeau, "Extensible Markup Language (XML) 1.0
(Fifth Edition)", W3C Recommendation REC-xml-20081126,
November 2008, <https://www.w3.org/TR/xml/>.
Acknowledgements
The authors would like to thank the following for lively discussions
on list and in the halls (ordered by first name): Alan Luchuk, Andy
Bierman, Balázs Kovács, Benoit Claise, Bert Wijnen, Balázs Kovács, David Lamparter,
Eric Voit, Éric Vyncke, Francesca Palombini, Jürgen Schönwälder,
Ladislav Lhotka, Liang Xia, Jürgen Schönwälder, Mahesh Jethanandani, Magnus Nyström, Mahesh Jethanandani,
Martin Björklund, Mehmet Ersue, Murray Kucherawy, Paul Wouters, Phil
Shafer, Qin Wu, Radek Krejci, Ramkumar Dhanapal, Reese Enghardt,
Reshad Rahman, Rob Wilton, Roman Danyliw, Sandra Murphy, Sean Turner,
Tom Petch, Warren Kumari, and Zaheduzzaman Sarker.
Author's Address
Kent Watsen
Watsen Networks
Email: kent+ietf@watsen.net