LLVM OpenMP* Runtime Library
Loading...
Searching...
No Matches
kmp_alloc.cpp
1/*
2 * kmp_alloc.cpp -- private/shared dynamic memory allocation and management
3 */
4
5//===----------------------------------------------------------------------===//
6//
7// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
8// See https://llvm.org/LICENSE.txt for license information.
9// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
10//
11//===----------------------------------------------------------------------===//
12
13#include "kmp.h"
14#include "kmp_io.h"
15#include "kmp_wrapper_malloc.h"
16
17// Disable bget when it is not used
18#if KMP_USE_BGET
19
20/* Thread private buffer management code */
21
22typedef int (*bget_compact_t)(size_t, int);
23typedef void *(*bget_acquire_t)(size_t);
24typedef void (*bget_release_t)(void *);
25
26/* NOTE: bufsize must be a signed datatype */
27
28#if KMP_OS_WINDOWS
29#if KMP_ARCH_X86 || KMP_ARCH_ARM
30typedef kmp_int32 bufsize;
31#else
32typedef kmp_int64 bufsize;
33#endif
34#else
35typedef ssize_t bufsize;
36#endif // KMP_OS_WINDOWS
37
38/* The three modes of operation are, fifo search, lifo search, and best-fit */
39
40typedef enum bget_mode {
41 bget_mode_fifo = 0,
42 bget_mode_lifo = 1,
43 bget_mode_best = 2
44} bget_mode_t;
45
46static void bpool(kmp_info_t *th, void *buffer, bufsize len);
47static void *bget(kmp_info_t *th, bufsize size);
48static void *bgetz(kmp_info_t *th, bufsize size);
49static void *bgetr(kmp_info_t *th, void *buffer, bufsize newsize);
50static void brel(kmp_info_t *th, void *buf);
51static void bectl(kmp_info_t *th, bget_compact_t compact,
52 bget_acquire_t acquire, bget_release_t release,
53 bufsize pool_incr);
54
55/* BGET CONFIGURATION */
56/* Buffer allocation size quantum: all buffers allocated are a
57 multiple of this size. This MUST be a power of two. */
58
59/* On IA-32 architecture with Linux* OS, malloc() does not
60 ensure 16 byte alignment */
61
62#if KMP_ARCH_X86 || !KMP_HAVE_QUAD
63
64#define SizeQuant 8
65#define AlignType double
66
67#else
68
69#define SizeQuant 16
70#define AlignType _Quad
71
72#endif
73
74// Define this symbol to enable the bstats() function which calculates the
75// total free space in the buffer pool, the largest available buffer, and the
76// total space currently allocated.
77#define BufStats 1
78
79#ifdef KMP_DEBUG
80
81// Define this symbol to enable the bpoold() function which dumps the buffers
82// in a buffer pool.
83#define BufDump 1
84
85// Define this symbol to enable the bpoolv() function for validating a buffer
86// pool.
87#define BufValid 1
88
89// Define this symbol to enable the bufdump() function which allows dumping the
90// contents of an allocated or free buffer.
91#define DumpData 1
92
93#ifdef NOT_USED_NOW
94
95// Wipe free buffers to a guaranteed pattern of garbage to trip up miscreants
96// who attempt to use pointers into released buffers.
97#define FreeWipe 1
98
99// Use a best fit algorithm when searching for space for an allocation request.
100// This uses memory more efficiently, but allocation will be much slower.
101#define BestFit 1
102
103#endif /* NOT_USED_NOW */
104#endif /* KMP_DEBUG */
105
106static bufsize bget_bin_size[] = {
107 0,
108 // 1 << 6, /* .5 Cache line */
109 1 << 7, /* 1 Cache line, new */
110 1 << 8, /* 2 Cache lines */
111 1 << 9, /* 4 Cache lines, new */
112 1 << 10, /* 8 Cache lines */
113 1 << 11, /* 16 Cache lines, new */
114 1 << 12, 1 << 13, /* new */
115 1 << 14, 1 << 15, /* new */
116 1 << 16, 1 << 17, 1 << 18, 1 << 19, 1 << 20, /* 1MB */
117 1 << 21, /* 2MB */
118 1 << 22, /* 4MB */
119 1 << 23, /* 8MB */
120 1 << 24, /* 16MB */
121 1 << 25, /* 32MB */
122};
123
124#define MAX_BGET_BINS (int)(sizeof(bget_bin_size) / sizeof(bufsize))
125
126struct bfhead;
127
128// Declare the interface, including the requested buffer size type, bufsize.
129
130/* Queue links */
131typedef struct qlinks {
132 struct bfhead *flink; /* Forward link */
133 struct bfhead *blink; /* Backward link */
134} qlinks_t;
135
136/* Header in allocated and free buffers */
137typedef struct bhead2 {
138 kmp_info_t *bthr; /* The thread which owns the buffer pool */
139 bufsize prevfree; /* Relative link back to previous free buffer in memory or
140 0 if previous buffer is allocated. */
141 bufsize bsize; /* Buffer size: positive if free, negative if allocated. */
142} bhead2_t;
143
144/* Make sure the bhead structure is a multiple of SizeQuant in size. */
145typedef union bhead {
146 KMP_ALIGN(SizeQuant)
147 AlignType b_align;
148 char b_pad[sizeof(bhead2_t) + (SizeQuant - (sizeof(bhead2_t) % SizeQuant))];
149 bhead2_t bb;
150} bhead_t;
151#define BH(p) ((bhead_t *)(p))
152
153/* Header in directly allocated buffers (by acqfcn) */
154typedef struct bdhead {
155 bufsize tsize; /* Total size, including overhead */
156 bhead_t bh; /* Common header */
157} bdhead_t;
158#define BDH(p) ((bdhead_t *)(p))
159
160/* Header in free buffers */
161typedef struct bfhead {
162 bhead_t bh; /* Common allocated/free header */
163 qlinks_t ql; /* Links on free list */
164} bfhead_t;
165#define BFH(p) ((bfhead_t *)(p))
166
167typedef struct thr_data {
168 bfhead_t freelist[MAX_BGET_BINS];
169#if BufStats
170 size_t totalloc; /* Total space currently allocated */
171 long numget, numrel; /* Number of bget() and brel() calls */
172 long numpblk; /* Number of pool blocks */
173 long numpget, numprel; /* Number of block gets and rels */
174 long numdget, numdrel; /* Number of direct gets and rels */
175#endif /* BufStats */
176
177 /* Automatic expansion block management functions */
178 bget_compact_t compfcn;
179 bget_acquire_t acqfcn;
180 bget_release_t relfcn;
181
182 bget_mode_t mode; /* what allocation mode to use? */
183
184 bufsize exp_incr; /* Expansion block size */
185 bufsize pool_len; /* 0: no bpool calls have been made
186 -1: not all pool blocks are the same size
187 >0: (common) block size for all bpool calls made so far
188 */
189 bfhead_t *last_pool; /* Last pool owned by this thread (delay deallocation) */
190} thr_data_t;
191
192/* Minimum allocation quantum: */
193#define QLSize (sizeof(qlinks_t))
194#define SizeQ ((SizeQuant > QLSize) ? SizeQuant : QLSize)
195#define MaxSize \
196 (bufsize)( \
197 ~(((bufsize)(1) << (sizeof(bufsize) * CHAR_BIT - 1)) | (SizeQuant - 1)))
198// Maximum for the requested size.
199
200/* End sentinel: value placed in bsize field of dummy block delimiting
201 end of pool block. The most negative number which will fit in a
202 bufsize, defined in a way that the compiler will accept. */
203
204#define ESent \
205 ((bufsize)(-(((((bufsize)1) << ((int)sizeof(bufsize) * 8 - 2)) - 1) * 2) - 2))
206
207/* Thread Data management routines */
208static int bget_get_bin(bufsize size) {
209 // binary chop bins
210 int lo = 0, hi = MAX_BGET_BINS - 1;
211
212 KMP_DEBUG_ASSERT(size > 0);
213
214 while ((hi - lo) > 1) {
215 int mid = (lo + hi) >> 1;
216 if (size < bget_bin_size[mid])
217 hi = mid - 1;
218 else
219 lo = mid;
220 }
221
222 KMP_DEBUG_ASSERT((lo >= 0) && (lo < MAX_BGET_BINS));
223
224 return lo;
225}
226
227static void set_thr_data(kmp_info_t *th) {
228 int i;
229 thr_data_t *data;
230
231 data = (thr_data_t *)((!th->th.th_local.bget_data)
232 ? __kmp_allocate(sizeof(*data))
233 : th->th.th_local.bget_data);
234
235 memset(data, '\0', sizeof(*data));
236
237 for (i = 0; i < MAX_BGET_BINS; ++i) {
238 data->freelist[i].ql.flink = &data->freelist[i];
239 data->freelist[i].ql.blink = &data->freelist[i];
240 }
241
242 th->th.th_local.bget_data = data;
243 th->th.th_local.bget_list = 0;
244#if !USE_CMP_XCHG_FOR_BGET
245#ifdef USE_QUEUING_LOCK_FOR_BGET
246 __kmp_init_lock(&th->th.th_local.bget_lock);
247#else
248 __kmp_init_bootstrap_lock(&th->th.th_local.bget_lock);
249#endif /* USE_LOCK_FOR_BGET */
250#endif /* ! USE_CMP_XCHG_FOR_BGET */
251}
252
253static thr_data_t *get_thr_data(kmp_info_t *th) {
254 thr_data_t *data;
255
256 data = (thr_data_t *)th->th.th_local.bget_data;
257
258 KMP_DEBUG_ASSERT(data != 0);
259
260 return data;
261}
262
263/* Walk the free list and release the enqueued buffers */
264static void __kmp_bget_dequeue(kmp_info_t *th) {
265 void *p = TCR_SYNC_PTR(th->th.th_local.bget_list);
266
267 if (p != 0) {
268#if USE_CMP_XCHG_FOR_BGET
269 {
270 volatile void *old_value = TCR_SYNC_PTR(th->th.th_local.bget_list);
271 while (!KMP_COMPARE_AND_STORE_PTR(&th->th.th_local.bget_list,
272 CCAST(void *, old_value), nullptr)) {
273 KMP_CPU_PAUSE();
274 old_value = TCR_SYNC_PTR(th->th.th_local.bget_list);
275 }
276 p = CCAST(void *, old_value);
277 }
278#else /* ! USE_CMP_XCHG_FOR_BGET */
279#ifdef USE_QUEUING_LOCK_FOR_BGET
280 __kmp_acquire_lock(&th->th.th_local.bget_lock, __kmp_gtid_from_thread(th));
281#else
282 __kmp_acquire_bootstrap_lock(&th->th.th_local.bget_lock);
283#endif /* USE_QUEUING_LOCK_FOR_BGET */
284
285 p = (void *)th->th.th_local.bget_list;
286 th->th.th_local.bget_list = 0;
287
288#ifdef USE_QUEUING_LOCK_FOR_BGET
289 __kmp_release_lock(&th->th.th_local.bget_lock, __kmp_gtid_from_thread(th));
290#else
291 __kmp_release_bootstrap_lock(&th->th.th_local.bget_lock);
292#endif
293#endif /* USE_CMP_XCHG_FOR_BGET */
294
295 /* Check again to make sure the list is not empty */
296 while (p != 0) {
297 void *buf = p;
298 bfhead_t *b = BFH(((char *)p) - sizeof(bhead_t));
299
300 KMP_DEBUG_ASSERT(b->bh.bb.bsize != 0);
301 KMP_DEBUG_ASSERT(((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) & ~1) ==
302 (kmp_uintptr_t)th); // clear possible mark
303 KMP_DEBUG_ASSERT(b->ql.blink == 0);
304
305 p = (void *)b->ql.flink;
306
307 brel(th, buf);
308 }
309 }
310}
311
312/* Chain together the free buffers by using the thread owner field */
313static void __kmp_bget_enqueue(kmp_info_t *th, void *buf
314#ifdef USE_QUEUING_LOCK_FOR_BGET
315 ,
316 kmp_int32 rel_gtid
317#endif
318) {
319 bfhead_t *b = BFH(((char *)buf) - sizeof(bhead_t));
320
321 KMP_DEBUG_ASSERT(b->bh.bb.bsize != 0);
322 KMP_DEBUG_ASSERT(((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) & ~1) ==
323 (kmp_uintptr_t)th); // clear possible mark
324
325 b->ql.blink = 0;
326
327 KC_TRACE(10, ("__kmp_bget_enqueue: moving buffer to T#%d list\n",
328 __kmp_gtid_from_thread(th)));
329
330#if USE_CMP_XCHG_FOR_BGET
331 {
332 volatile void *old_value = TCR_PTR(th->th.th_local.bget_list);
333 /* the next pointer must be set before setting bget_list to buf to avoid
334 exposing a broken list to other threads, even for an instant. */
335 b->ql.flink = BFH(CCAST(void *, old_value));
336
337 while (!KMP_COMPARE_AND_STORE_PTR(&th->th.th_local.bget_list,
338 CCAST(void *, old_value), buf)) {
339 KMP_CPU_PAUSE();
340 old_value = TCR_PTR(th->th.th_local.bget_list);
341 /* the next pointer must be set before setting bget_list to buf to avoid
342 exposing a broken list to other threads, even for an instant. */
343 b->ql.flink = BFH(CCAST(void *, old_value));
344 }
345 }
346#else /* ! USE_CMP_XCHG_FOR_BGET */
347#ifdef USE_QUEUING_LOCK_FOR_BGET
348 __kmp_acquire_lock(&th->th.th_local.bget_lock, rel_gtid);
349#else
350 __kmp_acquire_bootstrap_lock(&th->th.th_local.bget_lock);
351#endif
352
353 b->ql.flink = BFH(th->th.th_local.bget_list);
354 th->th.th_local.bget_list = (void *)buf;
355
356#ifdef USE_QUEUING_LOCK_FOR_BGET
357 __kmp_release_lock(&th->th.th_local.bget_lock, rel_gtid);
358#else
359 __kmp_release_bootstrap_lock(&th->th.th_local.bget_lock);
360#endif
361#endif /* USE_CMP_XCHG_FOR_BGET */
362}
363
364/* insert buffer back onto a new freelist */
365static void __kmp_bget_insert_into_freelist(thr_data_t *thr, bfhead_t *b) {
366 int bin;
367
368 KMP_DEBUG_ASSERT(((size_t)b) % SizeQuant == 0);
369 KMP_DEBUG_ASSERT(b->bh.bb.bsize % SizeQuant == 0);
370
371 bin = bget_get_bin(b->bh.bb.bsize);
372
373 KMP_DEBUG_ASSERT(thr->freelist[bin].ql.blink->ql.flink ==
374 &thr->freelist[bin]);
375 KMP_DEBUG_ASSERT(thr->freelist[bin].ql.flink->ql.blink ==
376 &thr->freelist[bin]);
377
378 b->ql.flink = &thr->freelist[bin];
379 b->ql.blink = thr->freelist[bin].ql.blink;
380
381 thr->freelist[bin].ql.blink = b;
382 b->ql.blink->ql.flink = b;
383}
384
385/* unlink the buffer from the old freelist */
386static void __kmp_bget_remove_from_freelist(bfhead_t *b) {
387 KMP_DEBUG_ASSERT(b->ql.blink->ql.flink == b);
388 KMP_DEBUG_ASSERT(b->ql.flink->ql.blink == b);
389
390 b->ql.blink->ql.flink = b->ql.flink;
391 b->ql.flink->ql.blink = b->ql.blink;
392}
393
394/* GET STATS -- check info on free list */
395static void bcheck(kmp_info_t *th, bufsize *max_free, bufsize *total_free) {
396 thr_data_t *thr = get_thr_data(th);
397 int bin;
398
399 *total_free = *max_free = 0;
400
401 for (bin = 0; bin < MAX_BGET_BINS; ++bin) {
402 bfhead_t *b, *best;
403
404 best = &thr->freelist[bin];
405 b = best->ql.flink;
406
407 while (b != &thr->freelist[bin]) {
408 *total_free += (b->bh.bb.bsize - sizeof(bhead_t));
409 if ((best == &thr->freelist[bin]) || (b->bh.bb.bsize < best->bh.bb.bsize))
410 best = b;
411
412 /* Link to next buffer */
413 b = b->ql.flink;
414 }
415
416 if (*max_free < best->bh.bb.bsize)
417 *max_free = best->bh.bb.bsize;
418 }
419
420 if (*max_free > (bufsize)sizeof(bhead_t))
421 *max_free -= sizeof(bhead_t);
422}
423
424/* BGET -- Allocate a buffer. */
425static void *bget(kmp_info_t *th, bufsize requested_size) {
426 thr_data_t *thr = get_thr_data(th);
427 bufsize size = requested_size;
428 bfhead_t *b;
429 void *buf;
430 int compactseq = 0;
431 int use_blink = 0;
432 /* For BestFit */
433 bfhead_t *best;
434
435 if (size < 0 || size + sizeof(bhead_t) > MaxSize) {
436 return NULL;
437 }
438
439 __kmp_bget_dequeue(th); /* Release any queued buffers */
440
441 if (size < (bufsize)SizeQ) { // Need at least room for the queue links.
442 size = SizeQ;
443 }
444#if defined(SizeQuant) && (SizeQuant > 1)
445 size = (size + (SizeQuant - 1)) & (~(SizeQuant - 1));
446#endif
447
448 size += sizeof(bhead_t); // Add overhead in allocated buffer to size required.
449 KMP_DEBUG_ASSERT(size >= 0);
450 KMP_DEBUG_ASSERT(size % SizeQuant == 0);
451
452 use_blink = (thr->mode == bget_mode_lifo);
453
454 /* If a compact function was provided in the call to bectl(), wrap
455 a loop around the allocation process to allow compaction to
456 intervene in case we don't find a suitable buffer in the chain. */
457
458 for (;;) {
459 int bin;
460
461 for (bin = bget_get_bin(size); bin < MAX_BGET_BINS; ++bin) {
462 /* Link to next buffer */
463 b = (use_blink ? thr->freelist[bin].ql.blink
464 : thr->freelist[bin].ql.flink);
465
466 if (thr->mode == bget_mode_best) {
467 best = &thr->freelist[bin];
468
469 /* Scan the free list searching for the first buffer big enough
470 to hold the requested size buffer. */
471 while (b != &thr->freelist[bin]) {
472 if (b->bh.bb.bsize >= (bufsize)size) {
473 if ((best == &thr->freelist[bin]) ||
474 (b->bh.bb.bsize < best->bh.bb.bsize)) {
475 best = b;
476 }
477 }
478
479 /* Link to next buffer */
480 b = (use_blink ? b->ql.blink : b->ql.flink);
481 }
482 b = best;
483 }
484
485 while (b != &thr->freelist[bin]) {
486 if ((bufsize)b->bh.bb.bsize >= (bufsize)size) {
487
488 // Buffer is big enough to satisfy the request. Allocate it to the
489 // caller. We must decide whether the buffer is large enough to split
490 // into the part given to the caller and a free buffer that remains
491 // on the free list, or whether the entire buffer should be removed
492 // from the free list and given to the caller in its entirety. We
493 // only split the buffer if enough room remains for a header plus the
494 // minimum quantum of allocation.
495 if ((b->bh.bb.bsize - (bufsize)size) >
496 (bufsize)(SizeQ + (sizeof(bhead_t)))) {
497 bhead_t *ba, *bn;
498
499 ba = BH(((char *)b) + (b->bh.bb.bsize - (bufsize)size));
500 bn = BH(((char *)ba) + size);
501
502 KMP_DEBUG_ASSERT(bn->bb.prevfree == b->bh.bb.bsize);
503
504 /* Subtract size from length of free block. */
505 b->bh.bb.bsize -= (bufsize)size;
506
507 /* Link allocated buffer to the previous free buffer. */
508 ba->bb.prevfree = b->bh.bb.bsize;
509
510 /* Plug negative size into user buffer. */
511 ba->bb.bsize = -size;
512
513 /* Mark this buffer as owned by this thread. */
514 TCW_PTR(ba->bb.bthr,
515 th); // not an allocated address (do not mark it)
516 /* Mark buffer after this one not preceded by free block. */
517 bn->bb.prevfree = 0;
518
519 // unlink buffer from old freelist, and reinsert into new freelist
520 __kmp_bget_remove_from_freelist(b);
521 __kmp_bget_insert_into_freelist(thr, b);
522#if BufStats
523 thr->totalloc += (size_t)size;
524 thr->numget++; /* Increment number of bget() calls */
525#endif
526 buf = (void *)((((char *)ba) + sizeof(bhead_t)));
527 KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
528 return buf;
529 } else {
530 bhead_t *ba;
531
532 ba = BH(((char *)b) + b->bh.bb.bsize);
533
534 KMP_DEBUG_ASSERT(ba->bb.prevfree == b->bh.bb.bsize);
535
536 /* The buffer isn't big enough to split. Give the whole
537 shebang to the caller and remove it from the free list. */
538
539 __kmp_bget_remove_from_freelist(b);
540#if BufStats
541 thr->totalloc += (size_t)b->bh.bb.bsize;
542 thr->numget++; /* Increment number of bget() calls */
543#endif
544 /* Negate size to mark buffer allocated. */
545 b->bh.bb.bsize = -(b->bh.bb.bsize);
546
547 /* Mark this buffer as owned by this thread. */
548 TCW_PTR(ba->bb.bthr, th); // not an allocated address (do not mark)
549 /* Zero the back pointer in the next buffer in memory
550 to indicate that this buffer is allocated. */
551 ba->bb.prevfree = 0;
552
553 /* Give user buffer starting at queue links. */
554 buf = (void *)&(b->ql);
555 KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
556 return buf;
557 }
558 }
559
560 /* Link to next buffer */
561 b = (use_blink ? b->ql.blink : b->ql.flink);
562 }
563 }
564
565 /* We failed to find a buffer. If there's a compact function defined,
566 notify it of the size requested. If it returns TRUE, try the allocation
567 again. */
568
569 if ((thr->compfcn == 0) || (!(*thr->compfcn)(size, ++compactseq))) {
570 break;
571 }
572 }
573
574 /* No buffer available with requested size free. */
575
576 /* Don't give up yet -- look in the reserve supply. */
577 if (thr->acqfcn != 0) {
578 if (size > (bufsize)(thr->exp_incr - sizeof(bhead_t))) {
579 /* Request is too large to fit in a single expansion block.
580 Try to satisfy it by a direct buffer acquisition. */
581 bdhead_t *bdh;
582
583 size += sizeof(bdhead_t) - sizeof(bhead_t);
584
585 KE_TRACE(10, ("%%%%%% MALLOC( %d )\n", (int)size));
586
587 /* richryan */
588 bdh = BDH((*thr->acqfcn)((bufsize)size));
589 if (bdh != NULL) {
590
591 // Mark the buffer special by setting size field of its header to zero.
592 bdh->bh.bb.bsize = 0;
593
594 /* Mark this buffer as owned by this thread. */
595 TCW_PTR(bdh->bh.bb.bthr, th); // don't mark buffer as allocated,
596 // because direct buffer never goes to free list
597 bdh->bh.bb.prevfree = 0;
598 bdh->tsize = size;
599#if BufStats
600 thr->totalloc += (size_t)size;
601 thr->numget++; /* Increment number of bget() calls */
602 thr->numdget++; /* Direct bget() call count */
603#endif
604 buf = (void *)(bdh + 1);
605 KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
606 return buf;
607 }
608
609 } else {
610
611 /* Try to obtain a new expansion block */
612 void *newpool;
613
614 KE_TRACE(10, ("%%%%%% MALLOCB( %d )\n", (int)thr->exp_incr));
615
616 /* richryan */
617 newpool = (*thr->acqfcn)((bufsize)thr->exp_incr);
618 KMP_DEBUG_ASSERT(((size_t)newpool) % SizeQuant == 0);
619 if (newpool != NULL) {
620 bpool(th, newpool, thr->exp_incr);
621 buf = bget(
622 th, requested_size); /* This can't, I say, can't get into a loop. */
623 return buf;
624 }
625 }
626 }
627
628 /* Still no buffer available */
629
630 return NULL;
631}
632
633/* BGETZ -- Allocate a buffer and clear its contents to zero. We clear
634 the entire contents of the buffer to zero, not just the
635 region requested by the caller. */
636
637static void *bgetz(kmp_info_t *th, bufsize size) {
638 char *buf = (char *)bget(th, size);
639
640 if (buf != NULL) {
641 bhead_t *b;
642 bufsize rsize;
643
644 b = BH(buf - sizeof(bhead_t));
645 rsize = -(b->bb.bsize);
646 if (rsize == 0) {
647 bdhead_t *bd;
648
649 bd = BDH(buf - sizeof(bdhead_t));
650 rsize = bd->tsize - (bufsize)sizeof(bdhead_t);
651 } else {
652 rsize -= sizeof(bhead_t);
653 }
654
655 KMP_DEBUG_ASSERT(rsize >= size);
656
657 (void)memset(buf, 0, (bufsize)rsize);
658 }
659 return ((void *)buf);
660}
661
662/* BGETR -- Reallocate a buffer. This is a minimal implementation,
663 simply in terms of brel() and bget(). It could be
664 enhanced to allow the buffer to grow into adjacent free
665 blocks and to avoid moving data unnecessarily. */
666
667static void *bgetr(kmp_info_t *th, void *buf, bufsize size) {
668 void *nbuf;
669 bufsize osize; /* Old size of buffer */
670 bhead_t *b;
671
672 nbuf = bget(th, size);
673 if (nbuf == NULL) { /* Acquire new buffer */
674 return NULL;
675 }
676 if (buf == NULL) {
677 return nbuf;
678 }
679 b = BH(((char *)buf) - sizeof(bhead_t));
680 osize = -b->bb.bsize;
681 if (osize == 0) {
682 /* Buffer acquired directly through acqfcn. */
683 bdhead_t *bd;
684
685 bd = BDH(((char *)buf) - sizeof(bdhead_t));
686 osize = bd->tsize - (bufsize)sizeof(bdhead_t);
687 } else {
688 osize -= sizeof(bhead_t);
689 }
690
691 KMP_DEBUG_ASSERT(osize > 0);
692
693 (void)KMP_MEMCPY((char *)nbuf, (char *)buf, /* Copy the data */
694 (size_t)((size < osize) ? size : osize));
695 brel(th, buf);
696
697 return nbuf;
698}
699
700/* BREL -- Release a buffer. */
701static void brel(kmp_info_t *th, void *buf) {
702 thr_data_t *thr = get_thr_data(th);
703 bfhead_t *b, *bn;
704 kmp_info_t *bth;
705
706 KMP_DEBUG_ASSERT(buf != NULL);
707 KMP_DEBUG_ASSERT(((size_t)buf) % SizeQuant == 0);
708
709 b = BFH(((char *)buf) - sizeof(bhead_t));
710
711 if (b->bh.bb.bsize == 0) { /* Directly-acquired buffer? */
712 bdhead_t *bdh;
713
714 bdh = BDH(((char *)buf) - sizeof(bdhead_t));
715 KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0);
716#if BufStats
717 thr->totalloc -= (size_t)bdh->tsize;
718 thr->numdrel++; /* Number of direct releases */
719 thr->numrel++; /* Increment number of brel() calls */
720#endif /* BufStats */
721#ifdef FreeWipe
722 (void)memset((char *)buf, 0x55, (size_t)(bdh->tsize - sizeof(bdhead_t)));
723#endif /* FreeWipe */
724
725 KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)bdh));
726
727 KMP_DEBUG_ASSERT(thr->relfcn != 0);
728 (*thr->relfcn)((void *)bdh); /* Release it directly. */
729 return;
730 }
731
732 bth = (kmp_info_t *)((kmp_uintptr_t)TCR_PTR(b->bh.bb.bthr) &
733 ~1); // clear possible mark before comparison
734 if (bth != th) {
735 /* Add this buffer to be released by the owning thread later */
736 __kmp_bget_enqueue(bth, buf
737#ifdef USE_QUEUING_LOCK_FOR_BGET
738 ,
739 __kmp_gtid_from_thread(th)
740#endif
741 );
742 return;
743 }
744
745 /* Buffer size must be negative, indicating that the buffer is allocated. */
746 if (b->bh.bb.bsize >= 0) {
747 bn = NULL;
748 }
749 KMP_DEBUG_ASSERT(b->bh.bb.bsize < 0);
750
751 /* Back pointer in next buffer must be zero, indicating the same thing: */
752
753 KMP_DEBUG_ASSERT(BH((char *)b - b->bh.bb.bsize)->bb.prevfree == 0);
754
755#if BufStats
756 thr->numrel++; /* Increment number of brel() calls */
757 thr->totalloc += (size_t)b->bh.bb.bsize;
758#endif
759
760 /* If the back link is nonzero, the previous buffer is free. */
761
762 if (b->bh.bb.prevfree != 0) {
763 /* The previous buffer is free. Consolidate this buffer with it by adding
764 the length of this buffer to the previous free buffer. Note that we
765 subtract the size in the buffer being released, since it's negative to
766 indicate that the buffer is allocated. */
767 bufsize size = b->bh.bb.bsize;
768
769 /* Make the previous buffer the one we're working on. */
770 KMP_DEBUG_ASSERT(BH((char *)b - b->bh.bb.prevfree)->bb.bsize ==
771 b->bh.bb.prevfree);
772 b = BFH(((char *)b) - b->bh.bb.prevfree);
773 b->bh.bb.bsize -= size;
774
775 /* unlink the buffer from the old freelist */
776 __kmp_bget_remove_from_freelist(b);
777 } else {
778 /* The previous buffer isn't allocated. Mark this buffer size as positive
779 (i.e. free) and fall through to place the buffer on the free list as an
780 isolated free block. */
781 b->bh.bb.bsize = -b->bh.bb.bsize;
782 }
783
784 /* insert buffer back onto a new freelist */
785 __kmp_bget_insert_into_freelist(thr, b);
786
787 /* Now we look at the next buffer in memory, located by advancing from
788 the start of this buffer by its size, to see if that buffer is
789 free. If it is, we combine this buffer with the next one in
790 memory, dechaining the second buffer from the free list. */
791 bn = BFH(((char *)b) + b->bh.bb.bsize);
792 if (bn->bh.bb.bsize > 0) {
793
794 /* The buffer is free. Remove it from the free list and add
795 its size to that of our buffer. */
796 KMP_DEBUG_ASSERT(BH((char *)bn + bn->bh.bb.bsize)->bb.prevfree ==
797 bn->bh.bb.bsize);
798
799 __kmp_bget_remove_from_freelist(bn);
800
801 b->bh.bb.bsize += bn->bh.bb.bsize;
802
803 /* unlink the buffer from the old freelist, and reinsert it into the new
804 * freelist */
805 __kmp_bget_remove_from_freelist(b);
806 __kmp_bget_insert_into_freelist(thr, b);
807
808 /* Finally, advance to the buffer that follows the newly
809 consolidated free block. We must set its backpointer to the
810 head of the consolidated free block. We know the next block
811 must be an allocated block because the process of recombination
812 guarantees that two free blocks will never be contiguous in
813 memory. */
814 bn = BFH(((char *)b) + b->bh.bb.bsize);
815 }
816#ifdef FreeWipe
817 (void)memset(((char *)b) + sizeof(bfhead_t), 0x55,
818 (size_t)(b->bh.bb.bsize - sizeof(bfhead_t)));
819#endif
820 KMP_DEBUG_ASSERT(bn->bh.bb.bsize < 0);
821
822 /* The next buffer is allocated. Set the backpointer in it to point
823 to this buffer; the previous free buffer in memory. */
824
825 bn->bh.bb.prevfree = b->bh.bb.bsize;
826
827 /* If a block-release function is defined, and this free buffer
828 constitutes the entire block, release it. Note that pool_len
829 is defined in such a way that the test will fail unless all
830 pool blocks are the same size. */
831 if (thr->relfcn != 0 &&
832 b->bh.bb.bsize == (bufsize)(thr->pool_len - sizeof(bhead_t))) {
833#if BufStats
834 if (thr->numpblk !=
835 1) { /* Do not release the last buffer until finalization time */
836#endif
837
838 KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0);
839 KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.bsize == ESent);
840 KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.prevfree ==
841 b->bh.bb.bsize);
842
843 /* Unlink the buffer from the free list */
844 __kmp_bget_remove_from_freelist(b);
845
846 KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)b));
847
848 (*thr->relfcn)(b);
849#if BufStats
850 thr->numprel++; /* Nr of expansion block releases */
851 thr->numpblk--; /* Total number of blocks */
852 KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel);
853
854 // avoid leaving stale last_pool pointer around if it is being dealloced
855 if (thr->last_pool == b)
856 thr->last_pool = 0;
857 } else {
858 thr->last_pool = b;
859 }
860#endif /* BufStats */
861 }
862}
863
864/* BECTL -- Establish automatic pool expansion control */
865static void bectl(kmp_info_t *th, bget_compact_t compact,
866 bget_acquire_t acquire, bget_release_t release,
867 bufsize pool_incr) {
868 thr_data_t *thr = get_thr_data(th);
869
870 thr->compfcn = compact;
871 thr->acqfcn = acquire;
872 thr->relfcn = release;
873 thr->exp_incr = pool_incr;
874}
875
876/* BPOOL -- Add a region of memory to the buffer pool. */
877static void bpool(kmp_info_t *th, void *buf, bufsize len) {
878 /* int bin = 0; */
879 thr_data_t *thr = get_thr_data(th);
880 bfhead_t *b = BFH(buf);
881 bhead_t *bn;
882
883 __kmp_bget_dequeue(th); /* Release any queued buffers */
884
885#ifdef SizeQuant
886 len &= ~((bufsize)(SizeQuant - 1));
887#endif
888 if (thr->pool_len == 0) {
889 thr->pool_len = len;
890 } else if (len != thr->pool_len) {
891 thr->pool_len = -1;
892 }
893#if BufStats
894 thr->numpget++; /* Number of block acquisitions */
895 thr->numpblk++; /* Number of blocks total */
896 KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel);
897#endif /* BufStats */
898
899 /* Since the block is initially occupied by a single free buffer,
900 it had better not be (much) larger than the largest buffer
901 whose size we can store in bhead.bb.bsize. */
902 KMP_DEBUG_ASSERT(len - sizeof(bhead_t) <= -((bufsize)ESent + 1));
903
904 /* Clear the backpointer at the start of the block to indicate that
905 there is no free block prior to this one. That blocks
906 recombination when the first block in memory is released. */
907 b->bh.bb.prevfree = 0;
908
909 /* Create a dummy allocated buffer at the end of the pool. This dummy
910 buffer is seen when a buffer at the end of the pool is released and
911 blocks recombination of the last buffer with the dummy buffer at
912 the end. The length in the dummy buffer is set to the largest
913 negative number to denote the end of the pool for diagnostic
914 routines (this specific value is not counted on by the actual
915 allocation and release functions). */
916 len -= sizeof(bhead_t);
917 b->bh.bb.bsize = (bufsize)len;
918 /* Set the owner of this buffer */
919 TCW_PTR(b->bh.bb.bthr,
920 (kmp_info_t *)((kmp_uintptr_t)th |
921 1)); // mark the buffer as allocated address
922
923 /* Chain the new block to the free list. */
924 __kmp_bget_insert_into_freelist(thr, b);
925
926#ifdef FreeWipe
927 (void)memset(((char *)b) + sizeof(bfhead_t), 0x55,
928 (size_t)(len - sizeof(bfhead_t)));
929#endif
930 bn = BH(((char *)b) + len);
931 bn->bb.prevfree = (bufsize)len;
932 /* Definition of ESent assumes two's complement! */
933 KMP_DEBUG_ASSERT((~0) == -1 && (bn != 0));
934
935 bn->bb.bsize = ESent;
936}
937
938/* BFREED -- Dump the free lists for this thread. */
939static void bfreed(kmp_info_t *th) {
940 int bin = 0, count = 0;
941 int gtid = __kmp_gtid_from_thread(th);
942 thr_data_t *thr = get_thr_data(th);
943
944#if BufStats
945 __kmp_printf_no_lock("__kmp_printpool: T#%d total=%" KMP_UINT64_SPEC
946 " get=%" KMP_INT64_SPEC " rel=%" KMP_INT64_SPEC
947 " pblk=%" KMP_INT64_SPEC " pget=%" KMP_INT64_SPEC
948 " prel=%" KMP_INT64_SPEC " dget=%" KMP_INT64_SPEC
949 " drel=%" KMP_INT64_SPEC "\n",
950 gtid, (kmp_uint64)thr->totalloc, (kmp_int64)thr->numget,
951 (kmp_int64)thr->numrel, (kmp_int64)thr->numpblk,
952 (kmp_int64)thr->numpget, (kmp_int64)thr->numprel,
953 (kmp_int64)thr->numdget, (kmp_int64)thr->numdrel);
954#endif
955
956 for (bin = 0; bin < MAX_BGET_BINS; ++bin) {
957 bfhead_t *b;
958
959 for (b = thr->freelist[bin].ql.flink; b != &thr->freelist[bin];
960 b = b->ql.flink) {
961 bufsize bs = b->bh.bb.bsize;
962
963 KMP_DEBUG_ASSERT(b->ql.blink->ql.flink == b);
964 KMP_DEBUG_ASSERT(b->ql.flink->ql.blink == b);
965 KMP_DEBUG_ASSERT(bs > 0);
966
967 count += 1;
968
969 __kmp_printf_no_lock(
970 "__kmp_printpool: T#%d Free block: 0x%p size %6ld bytes.\n", gtid, b,
971 (long)bs);
972#ifdef FreeWipe
973 {
974 char *lerr = ((char *)b) + sizeof(bfhead_t);
975 if ((bs > sizeof(bfhead_t)) &&
976 ((*lerr != 0x55) ||
977 (memcmp(lerr, lerr + 1, (size_t)(bs - (sizeof(bfhead_t) + 1))) !=
978 0))) {
979 __kmp_printf_no_lock("__kmp_printpool: T#%d (Contents of above "
980 "free block have been overstored.)\n",
981 gtid);
982 }
983 }
984#endif
985 }
986 }
987
988 if (count == 0)
989 __kmp_printf_no_lock("__kmp_printpool: T#%d No free blocks\n", gtid);
990}
991
992void __kmp_initialize_bget(kmp_info_t *th) {
993 KMP_DEBUG_ASSERT(SizeQuant >= sizeof(void *) && (th != 0));
994
995 set_thr_data(th);
996
997 bectl(th, (bget_compact_t)0, (bget_acquire_t)malloc, (bget_release_t)free,
998 (bufsize)__kmp_malloc_pool_incr);
999}
1000
1001void __kmp_finalize_bget(kmp_info_t *th) {
1002 thr_data_t *thr;
1003 bfhead_t *b;
1004
1005 KMP_DEBUG_ASSERT(th != 0);
1006
1007#if BufStats
1008 thr = (thr_data_t *)th->th.th_local.bget_data;
1009 KMP_DEBUG_ASSERT(thr != NULL);
1010 b = thr->last_pool;
1011
1012 /* If a block-release function is defined, and this free buffer constitutes
1013 the entire block, release it. Note that pool_len is defined in such a way
1014 that the test will fail unless all pool blocks are the same size. */
1015
1016 // Deallocate the last pool if one exists because we no longer do it in brel()
1017 if (thr->relfcn != 0 && b != 0 && thr->numpblk != 0 &&
1018 b->bh.bb.bsize == (bufsize)(thr->pool_len - sizeof(bhead_t))) {
1019 KMP_DEBUG_ASSERT(b->bh.bb.prevfree == 0);
1020 KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.bsize == ESent);
1021 KMP_DEBUG_ASSERT(BH((char *)b + b->bh.bb.bsize)->bb.prevfree ==
1022 b->bh.bb.bsize);
1023
1024 /* Unlink the buffer from the free list */
1025 __kmp_bget_remove_from_freelist(b);
1026
1027 KE_TRACE(10, ("%%%%%% FREE( %p )\n", (void *)b));
1028
1029 (*thr->relfcn)(b);
1030 thr->numprel++; /* Nr of expansion block releases */
1031 thr->numpblk--; /* Total number of blocks */
1032 KMP_DEBUG_ASSERT(thr->numpblk == thr->numpget - thr->numprel);
1033 }
1034#endif /* BufStats */
1035
1036 /* Deallocate bget_data */
1037 if (th->th.th_local.bget_data != NULL) {
1038 __kmp_free(th->th.th_local.bget_data);
1039 th->th.th_local.bget_data = NULL;
1040 }
1041}
1042
1043void kmpc_set_poolsize(size_t size) {
1044 bectl(__kmp_get_thread(), (bget_compact_t)0, (bget_acquire_t)malloc,
1045 (bget_release_t)free, (bufsize)size);
1046}
1047
1048size_t kmpc_get_poolsize(void) {
1049 thr_data_t *p;
1050
1051 p = get_thr_data(__kmp_get_thread());
1052
1053 return p->exp_incr;
1054}
1055
1056void kmpc_set_poolmode(int mode) {
1057 thr_data_t *p;
1058
1059 if (mode == bget_mode_fifo || mode == bget_mode_lifo ||
1060 mode == bget_mode_best) {
1061 p = get_thr_data(__kmp_get_thread());
1062 p->mode = (bget_mode_t)mode;
1063 }
1064}
1065
1066int kmpc_get_poolmode(void) {
1067 thr_data_t *p;
1068
1069 p = get_thr_data(__kmp_get_thread());
1070
1071 return p->mode;
1072}
1073
1074void kmpc_get_poolstat(size_t *maxmem, size_t *allmem) {
1075 kmp_info_t *th = __kmp_get_thread();
1076 bufsize a, b;
1077
1078 __kmp_bget_dequeue(th); /* Release any queued buffers */
1079
1080 bcheck(th, &a, &b);
1081
1082 *maxmem = a;
1083 *allmem = b;
1084}
1085
1086void kmpc_poolprint(void) {
1087 kmp_info_t *th = __kmp_get_thread();
1088
1089 __kmp_bget_dequeue(th); /* Release any queued buffers */
1090
1091 bfreed(th);
1092}
1093
1094#endif // #if KMP_USE_BGET
1095
1096void *kmpc_malloc(size_t size) {
1097 void *ptr;
1098 ptr = bget(__kmp_entry_thread(), (bufsize)(size + sizeof(ptr)));
1099 if (ptr != NULL) {
1100 // save allocated pointer just before one returned to user
1101 *(void **)ptr = ptr;
1102 ptr = (void **)ptr + 1;
1103 }
1104 return ptr;
1105}
1106
1107#define IS_POWER_OF_TWO(n) (((n) & ((n)-1)) == 0)
1108
1109void *kmpc_aligned_malloc(size_t size, size_t alignment) {
1110 void *ptr;
1111 void *ptr_allocated;
1112 KMP_DEBUG_ASSERT(alignment < 32 * 1024); // Alignment should not be too big
1113 if (!IS_POWER_OF_TWO(alignment)) {
1114 // AC: do we need to issue a warning here?
1115 errno = EINVAL;
1116 return NULL;
1117 }
1118 size = size + sizeof(void *) + alignment;
1119 ptr_allocated = bget(__kmp_entry_thread(), (bufsize)size);
1120 if (ptr_allocated != NULL) {
1121 // save allocated pointer just before one returned to user
1122 ptr = (void *)(((kmp_uintptr_t)ptr_allocated + sizeof(void *) + alignment) &
1123 ~(alignment - 1));
1124 *((void **)ptr - 1) = ptr_allocated;
1125 } else {
1126 ptr = NULL;
1127 }
1128 return ptr;
1129}
1130
1131void *kmpc_calloc(size_t nelem, size_t elsize) {
1132 void *ptr;
1133 ptr = bgetz(__kmp_entry_thread(), (bufsize)(nelem * elsize + sizeof(ptr)));
1134 if (ptr != NULL) {
1135 // save allocated pointer just before one returned to user
1136 *(void **)ptr = ptr;
1137 ptr = (void **)ptr + 1;
1138 }
1139 return ptr;
1140}
1141
1142void *kmpc_realloc(void *ptr, size_t size) {
1143 void *result = NULL;
1144 if (ptr == NULL) {
1145 // If pointer is NULL, realloc behaves like malloc.
1146 result = bget(__kmp_entry_thread(), (bufsize)(size + sizeof(ptr)));
1147 // save allocated pointer just before one returned to user
1148 if (result != NULL) {
1149 *(void **)result = result;
1150 result = (void **)result + 1;
1151 }
1152 } else if (size == 0) {
1153 // If size is 0, realloc behaves like free.
1154 // The thread must be registered by the call to kmpc_malloc() or
1155 // kmpc_calloc() before.
1156 // So it should be safe to call __kmp_get_thread(), not
1157 // __kmp_entry_thread().
1158 KMP_ASSERT(*((void **)ptr - 1));
1159 brel(__kmp_get_thread(), *((void **)ptr - 1));
1160 } else {
1161 result = bgetr(__kmp_entry_thread(), *((void **)ptr - 1),
1162 (bufsize)(size + sizeof(ptr)));
1163 if (result != NULL) {
1164 *(void **)result = result;
1165 result = (void **)result + 1;
1166 }
1167 }
1168 return result;
1169}
1170
1171// NOTE: the library must have already been initialized by a previous allocate
1172void kmpc_free(void *ptr) {
1173 if (!__kmp_init_serial) {
1174 return;
1175 }
1176 if (ptr != NULL) {
1177 kmp_info_t *th = __kmp_get_thread();
1178 __kmp_bget_dequeue(th); /* Release any queued buffers */
1179 // extract allocated pointer and free it
1180 KMP_ASSERT(*((void **)ptr - 1));
1181 brel(th, *((void **)ptr - 1));
1182 }
1183}
1184
1185void *___kmp_thread_malloc(kmp_info_t *th, size_t size KMP_SRC_LOC_DECL) {
1186 void *ptr;
1187 KE_TRACE(30, ("-> __kmp_thread_malloc( %p, %d ) called from %s:%d\n", th,
1188 (int)size KMP_SRC_LOC_PARM));
1189 ptr = bget(th, (bufsize)size);
1190 KE_TRACE(30, ("<- __kmp_thread_malloc() returns %p\n", ptr));
1191 return ptr;
1192}
1193
1194void *___kmp_thread_calloc(kmp_info_t *th, size_t nelem,
1195 size_t elsize KMP_SRC_LOC_DECL) {
1196 void *ptr;
1197 KE_TRACE(30, ("-> __kmp_thread_calloc( %p, %d, %d ) called from %s:%d\n", th,
1198 (int)nelem, (int)elsize KMP_SRC_LOC_PARM));
1199 ptr = bgetz(th, (bufsize)(nelem * elsize));
1200 KE_TRACE(30, ("<- __kmp_thread_calloc() returns %p\n", ptr));
1201 return ptr;
1202}
1203
1204void *___kmp_thread_realloc(kmp_info_t *th, void *ptr,
1205 size_t size KMP_SRC_LOC_DECL) {
1206 KE_TRACE(30, ("-> __kmp_thread_realloc( %p, %p, %d ) called from %s:%d\n", th,
1207 ptr, (int)size KMP_SRC_LOC_PARM));
1208 ptr = bgetr(th, ptr, (bufsize)size);
1209 KE_TRACE(30, ("<- __kmp_thread_realloc() returns %p\n", ptr));
1210 return ptr;
1211}
1212
1213void ___kmp_thread_free(kmp_info_t *th, void *ptr KMP_SRC_LOC_DECL) {
1214 KE_TRACE(30, ("-> __kmp_thread_free( %p, %p ) called from %s:%d\n", th,
1215 ptr KMP_SRC_LOC_PARM));
1216 if (ptr != NULL) {
1217 __kmp_bget_dequeue(th); /* Release any queued buffers */
1218 brel(th, ptr);
1219 }
1220 KE_TRACE(30, ("<- __kmp_thread_free()\n"));
1221}
1222
1223/* OMP 5.0 Memory Management support */
1224static const char *kmp_mk_lib_name;
1225static void *h_memkind;
1226/* memkind experimental API: */
1227// memkind_alloc
1228static void *(*kmp_mk_alloc)(void *k, size_t sz);
1229// memkind_free
1230static void (*kmp_mk_free)(void *kind, void *ptr);
1231// memkind_check_available
1232static int (*kmp_mk_check)(void *kind);
1233// kinds we are going to use
1234static void **mk_default;
1235static void **mk_interleave;
1236static void **mk_hbw;
1237static void **mk_hbw_interleave;
1238static void **mk_hbw_preferred;
1239static void **mk_hugetlb;
1240static void **mk_hbw_hugetlb;
1241static void **mk_hbw_preferred_hugetlb;
1242static void **mk_dax_kmem;
1243static void **mk_dax_kmem_all;
1244static void **mk_dax_kmem_preferred;
1245static void *(*kmp_target_alloc_host)(size_t size, int device);
1246static void *(*kmp_target_alloc_shared)(size_t size, int device);
1247static void *(*kmp_target_alloc_device)(size_t size, int device);
1248static void *(*kmp_target_free)(void *ptr, int device);
1249static bool __kmp_target_mem_available;
1250#define KMP_IS_TARGET_MEM_SPACE(MS) \
1251 (MS == llvm_omp_target_host_mem_space || \
1252 MS == llvm_omp_target_shared_mem_space || \
1253 MS == llvm_omp_target_device_mem_space)
1254#define KMP_IS_TARGET_MEM_ALLOC(MA) \
1255 (MA == llvm_omp_target_host_mem_alloc || \
1256 MA == llvm_omp_target_shared_mem_alloc || \
1257 MA == llvm_omp_target_device_mem_alloc)
1258
1259#if KMP_OS_UNIX && KMP_DYNAMIC_LIB && !KMP_OS_DARWIN
1260static inline void chk_kind(void ***pkind) {
1261 KMP_DEBUG_ASSERT(pkind);
1262 if (*pkind) // symbol found
1263 if (kmp_mk_check(**pkind)) // kind not available or error
1264 *pkind = NULL;
1265}
1266#endif
1267
1268void __kmp_init_memkind() {
1269// as of 2018-07-31 memkind does not support Windows*, exclude it for now
1270#if KMP_OS_UNIX && KMP_DYNAMIC_LIB && !KMP_OS_DARWIN
1271 // use of statically linked memkind is problematic, as it depends on libnuma
1272 kmp_mk_lib_name = "libmemkind.so";
1273 h_memkind = dlopen(kmp_mk_lib_name, RTLD_LAZY);
1274 if (h_memkind) {
1275 kmp_mk_check = (int (*)(void *))dlsym(h_memkind, "memkind_check_available");
1276 kmp_mk_alloc =
1277 (void *(*)(void *, size_t))dlsym(h_memkind, "memkind_malloc");
1278 kmp_mk_free = (void (*)(void *, void *))dlsym(h_memkind, "memkind_free");
1279 mk_default = (void **)dlsym(h_memkind, "MEMKIND_DEFAULT");
1280 if (kmp_mk_check && kmp_mk_alloc && kmp_mk_free && mk_default &&
1281 !kmp_mk_check(*mk_default)) {
1282 __kmp_memkind_available = 1;
1283 mk_interleave = (void **)dlsym(h_memkind, "MEMKIND_INTERLEAVE");
1284 chk_kind(&mk_interleave);
1285 mk_hbw = (void **)dlsym(h_memkind, "MEMKIND_HBW");
1286 chk_kind(&mk_hbw);
1287 mk_hbw_interleave = (void **)dlsym(h_memkind, "MEMKIND_HBW_INTERLEAVE");
1288 chk_kind(&mk_hbw_interleave);
1289 mk_hbw_preferred = (void **)dlsym(h_memkind, "MEMKIND_HBW_PREFERRED");
1290 chk_kind(&mk_hbw_preferred);
1291 mk_hugetlb = (void **)dlsym(h_memkind, "MEMKIND_HUGETLB");
1292 chk_kind(&mk_hugetlb);
1293 mk_hbw_hugetlb = (void **)dlsym(h_memkind, "MEMKIND_HBW_HUGETLB");
1294 chk_kind(&mk_hbw_hugetlb);
1295 mk_hbw_preferred_hugetlb =
1296 (void **)dlsym(h_memkind, "MEMKIND_HBW_PREFERRED_HUGETLB");
1297 chk_kind(&mk_hbw_preferred_hugetlb);
1298 mk_dax_kmem = (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM");
1299 chk_kind(&mk_dax_kmem);
1300 mk_dax_kmem_all = (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM_ALL");
1301 chk_kind(&mk_dax_kmem_all);
1302 mk_dax_kmem_preferred =
1303 (void **)dlsym(h_memkind, "MEMKIND_DAX_KMEM_PREFERRED");
1304 chk_kind(&mk_dax_kmem_preferred);
1305 KE_TRACE(25, ("__kmp_init_memkind: memkind library initialized\n"));
1306 return; // success
1307 }
1308 dlclose(h_memkind); // failure
1309 }
1310#else // !(KMP_OS_UNIX && KMP_DYNAMIC_LIB)
1311 kmp_mk_lib_name = "";
1312#endif // !(KMP_OS_UNIX && KMP_DYNAMIC_LIB)
1313 h_memkind = NULL;
1314 kmp_mk_check = NULL;
1315 kmp_mk_alloc = NULL;
1316 kmp_mk_free = NULL;
1317 mk_default = NULL;
1318 mk_interleave = NULL;
1319 mk_hbw = NULL;
1320 mk_hbw_interleave = NULL;
1321 mk_hbw_preferred = NULL;
1322 mk_hugetlb = NULL;
1323 mk_hbw_hugetlb = NULL;
1324 mk_hbw_preferred_hugetlb = NULL;
1325 mk_dax_kmem = NULL;
1326 mk_dax_kmem_all = NULL;
1327 mk_dax_kmem_preferred = NULL;
1328}
1329
1330void __kmp_fini_memkind() {
1331#if KMP_OS_UNIX && KMP_DYNAMIC_LIB
1332 if (__kmp_memkind_available)
1333 KE_TRACE(25, ("__kmp_fini_memkind: finalize memkind library\n"));
1334 if (h_memkind) {
1335 dlclose(h_memkind);
1336 h_memkind = NULL;
1337 }
1338 kmp_mk_check = NULL;
1339 kmp_mk_alloc = NULL;
1340 kmp_mk_free = NULL;
1341 mk_default = NULL;
1342 mk_interleave = NULL;
1343 mk_hbw = NULL;
1344 mk_hbw_interleave = NULL;
1345 mk_hbw_preferred = NULL;
1346 mk_hugetlb = NULL;
1347 mk_hbw_hugetlb = NULL;
1348 mk_hbw_preferred_hugetlb = NULL;
1349 mk_dax_kmem = NULL;
1350 mk_dax_kmem_all = NULL;
1351 mk_dax_kmem_preferred = NULL;
1352#endif
1353}
1354
1355void __kmp_init_target_mem() {
1356 *(void **)(&kmp_target_alloc_host) = KMP_DLSYM("llvm_omp_target_alloc_host");
1357 *(void **)(&kmp_target_alloc_shared) =
1358 KMP_DLSYM("llvm_omp_target_alloc_shared");
1359 *(void **)(&kmp_target_alloc_device) =
1360 KMP_DLSYM("llvm_omp_target_alloc_device");
1361 *(void **)(&kmp_target_free) = KMP_DLSYM("omp_target_free");
1362 __kmp_target_mem_available = kmp_target_alloc_host &&
1363 kmp_target_alloc_shared &&
1364 kmp_target_alloc_device && kmp_target_free;
1365}
1366
1367omp_allocator_handle_t __kmpc_init_allocator(int gtid, omp_memspace_handle_t ms,
1368 int ntraits,
1369 omp_alloctrait_t traits[]) {
1370 // OpenMP 5.0 only allows predefined memspaces
1371 KMP_DEBUG_ASSERT(ms == omp_default_mem_space || ms == omp_low_lat_mem_space ||
1372 ms == omp_large_cap_mem_space || ms == omp_const_mem_space ||
1373 ms == omp_high_bw_mem_space || KMP_IS_TARGET_MEM_SPACE(ms));
1374 kmp_allocator_t *al;
1375 int i;
1376 al = (kmp_allocator_t *)__kmp_allocate(sizeof(kmp_allocator_t)); // zeroed
1377 al->memspace = ms; // not used currently
1378 for (i = 0; i < ntraits; ++i) {
1379 switch (traits[i].key) {
1380 case omp_atk_sync_hint:
1381 case omp_atk_access:
1382 case omp_atk_pinned:
1383 break;
1384 case omp_atk_alignment:
1385 __kmp_type_convert(traits[i].value, &(al->alignment));
1386 KMP_ASSERT(IS_POWER_OF_TWO(al->alignment));
1387 break;
1388 case omp_atk_pool_size:
1389 al->pool_size = traits[i].value;
1390 break;
1391 case omp_atk_fallback:
1392 al->fb = (omp_alloctrait_value_t)traits[i].value;
1393 KMP_DEBUG_ASSERT(
1394 al->fb == omp_atv_default_mem_fb || al->fb == omp_atv_null_fb ||
1395 al->fb == omp_atv_abort_fb || al->fb == omp_atv_allocator_fb);
1396 break;
1397 case omp_atk_fb_data:
1398 al->fb_data = RCAST(kmp_allocator_t *, traits[i].value);
1399 break;
1400 case omp_atk_partition:
1401 al->memkind = RCAST(void **, traits[i].value);
1402 break;
1403 default:
1404 KMP_ASSERT2(0, "Unexpected allocator trait");
1405 }
1406 }
1407 if (al->fb == 0) {
1408 // set default allocator
1409 al->fb = omp_atv_default_mem_fb;
1410 al->fb_data = (kmp_allocator_t *)omp_default_mem_alloc;
1411 } else if (al->fb == omp_atv_allocator_fb) {
1412 KMP_ASSERT(al->fb_data != NULL);
1413 } else if (al->fb == omp_atv_default_mem_fb) {
1414 al->fb_data = (kmp_allocator_t *)omp_default_mem_alloc;
1415 }
1416 if (__kmp_memkind_available) {
1417 // Let's use memkind library if available
1418 if (ms == omp_high_bw_mem_space) {
1419 if (al->memkind == (void *)omp_atv_interleaved && mk_hbw_interleave) {
1420 al->memkind = mk_hbw_interleave;
1421 } else if (mk_hbw_preferred) {
1422 // AC: do not try to use MEMKIND_HBW for now, because memkind library
1423 // cannot reliably detect exhaustion of HBW memory.
1424 // It could be possible using hbw_verify_memory_region() but memkind
1425 // manual says: "Using this function in production code may result in
1426 // serious performance penalty".
1427 al->memkind = mk_hbw_preferred;
1428 } else {
1429 // HBW is requested but not available --> return NULL allocator
1430 __kmp_free(al);
1431 return omp_null_allocator;
1432 }
1433 } else if (ms == omp_large_cap_mem_space) {
1434 if (mk_dax_kmem_all) {
1435 // All pmem nodes are visited
1436 al->memkind = mk_dax_kmem_all;
1437 } else if (mk_dax_kmem) {
1438 // Only closest pmem node is visited
1439 al->memkind = mk_dax_kmem;
1440 } else {
1441 __kmp_free(al);
1442 return omp_null_allocator;
1443 }
1444 } else {
1445 if (al->memkind == (void *)omp_atv_interleaved && mk_interleave) {
1446 al->memkind = mk_interleave;
1447 } else {
1448 al->memkind = mk_default;
1449 }
1450 }
1451 } else if (KMP_IS_TARGET_MEM_SPACE(ms) && !__kmp_target_mem_available) {
1452 __kmp_free(al);
1453 return omp_null_allocator;
1454 } else {
1455 if (ms == omp_high_bw_mem_space) {
1456 // cannot detect HBW memory presence without memkind library
1457 __kmp_free(al);
1458 return omp_null_allocator;
1459 }
1460 }
1461 return (omp_allocator_handle_t)al;
1462}
1463
1464void __kmpc_destroy_allocator(int gtid, omp_allocator_handle_t allocator) {
1465 if (allocator > kmp_max_mem_alloc)
1466 __kmp_free(allocator);
1467}
1468
1469void __kmpc_set_default_allocator(int gtid, omp_allocator_handle_t allocator) {
1470 if (allocator == omp_null_allocator)
1471 allocator = omp_default_mem_alloc;
1472 __kmp_threads[gtid]->th.th_def_allocator = allocator;
1473}
1474
1475omp_allocator_handle_t __kmpc_get_default_allocator(int gtid) {
1476 return __kmp_threads[gtid]->th.th_def_allocator;
1477}
1478
1479typedef struct kmp_mem_desc { // Memory block descriptor
1480 void *ptr_alloc; // Pointer returned by allocator
1481 size_t size_a; // Size of allocated memory block (initial+descriptor+align)
1482 size_t size_orig; // Original size requested
1483 void *ptr_align; // Pointer to aligned memory, returned
1484 kmp_allocator_t *allocator; // allocator
1485} kmp_mem_desc_t;
1486static int alignment = sizeof(void *); // align to pointer size by default
1487
1488// external interfaces are wrappers over internal implementation
1489void *__kmpc_alloc(int gtid, size_t size, omp_allocator_handle_t allocator) {
1490 KE_TRACE(25, ("__kmpc_alloc: T#%d (%d, %p)\n", gtid, (int)size, allocator));
1491 void *ptr = __kmp_alloc(gtid, 0, size, allocator);
1492 KE_TRACE(25, ("__kmpc_alloc returns %p, T#%d\n", ptr, gtid));
1493 return ptr;
1494}
1495
1496void *__kmpc_aligned_alloc(int gtid, size_t algn, size_t size,
1497 omp_allocator_handle_t allocator) {
1498 KE_TRACE(25, ("__kmpc_aligned_alloc: T#%d (%d, %d, %p)\n", gtid, (int)algn,
1499 (int)size, allocator));
1500 void *ptr = __kmp_alloc(gtid, algn, size, allocator);
1501 KE_TRACE(25, ("__kmpc_aligned_alloc returns %p, T#%d\n", ptr, gtid));
1502 return ptr;
1503}
1504
1505void *__kmpc_calloc(int gtid, size_t nmemb, size_t size,
1506 omp_allocator_handle_t allocator) {
1507 KE_TRACE(25, ("__kmpc_calloc: T#%d (%d, %d, %p)\n", gtid, (int)nmemb,
1508 (int)size, allocator));
1509 void *ptr = __kmp_calloc(gtid, 0, nmemb, size, allocator);
1510 KE_TRACE(25, ("__kmpc_calloc returns %p, T#%d\n", ptr, gtid));
1511 return ptr;
1512}
1513
1514void *__kmpc_realloc(int gtid, void *ptr, size_t size,
1515 omp_allocator_handle_t allocator,
1516 omp_allocator_handle_t free_allocator) {
1517 KE_TRACE(25, ("__kmpc_realloc: T#%d (%p, %d, %p, %p)\n", gtid, ptr, (int)size,
1518 allocator, free_allocator));
1519 void *nptr = __kmp_realloc(gtid, ptr, size, allocator, free_allocator);
1520 KE_TRACE(25, ("__kmpc_realloc returns %p, T#%d\n", nptr, gtid));
1521 return nptr;
1522}
1523
1524void __kmpc_free(int gtid, void *ptr, omp_allocator_handle_t allocator) {
1525 KE_TRACE(25, ("__kmpc_free: T#%d free(%p,%p)\n", gtid, ptr, allocator));
1526 ___kmpc_free(gtid, ptr, allocator);
1527 KE_TRACE(10, ("__kmpc_free: T#%d freed %p (%p)\n", gtid, ptr, allocator));
1528 return;
1529}
1530
1531// internal implementation, called from inside the library
1532void *__kmp_alloc(int gtid, size_t algn, size_t size,
1533 omp_allocator_handle_t allocator) {
1534 void *ptr = NULL;
1535 kmp_allocator_t *al;
1536 KMP_DEBUG_ASSERT(__kmp_init_serial);
1537 if (size == 0)
1538 return NULL;
1539 if (allocator == omp_null_allocator)
1540 allocator = __kmp_threads[gtid]->th.th_def_allocator;
1541
1542 al = RCAST(kmp_allocator_t *, allocator);
1543
1544 int sz_desc = sizeof(kmp_mem_desc_t);
1545 kmp_mem_desc_t desc;
1546 kmp_uintptr_t addr; // address returned by allocator
1547 kmp_uintptr_t addr_align; // address to return to caller
1548 kmp_uintptr_t addr_descr; // address of memory block descriptor
1549 size_t align = alignment; // default alignment
1550 if (allocator > kmp_max_mem_alloc && al->alignment > align)
1551 align = al->alignment; // alignment required by allocator trait
1552 if (align < algn)
1553 align = algn; // max of allocator trait, parameter and sizeof(void*)
1554 desc.size_orig = size;
1555 desc.size_a = size + sz_desc + align;
1556
1557 if (__kmp_memkind_available) {
1558 if (allocator < kmp_max_mem_alloc) {
1559 // pre-defined allocator
1560 if (allocator == omp_high_bw_mem_alloc && mk_hbw_preferred) {
1561 ptr = kmp_mk_alloc(*mk_hbw_preferred, desc.size_a);
1562 } else if (allocator == omp_large_cap_mem_alloc && mk_dax_kmem_all) {
1563 ptr = kmp_mk_alloc(*mk_dax_kmem_all, desc.size_a);
1564 } else {
1565 ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1566 }
1567 } else if (al->pool_size > 0) {
1568 // custom allocator with pool size requested
1569 kmp_uint64 used =
1570 KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, desc.size_a);
1571 if (used + desc.size_a > al->pool_size) {
1572 // not enough space, need to go fallback path
1573 KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1574 if (al->fb == omp_atv_default_mem_fb) {
1575 al = (kmp_allocator_t *)omp_default_mem_alloc;
1576 ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1577 } else if (al->fb == omp_atv_abort_fb) {
1578 KMP_ASSERT(0); // abort fallback requested
1579 } else if (al->fb == omp_atv_allocator_fb) {
1580 KMP_ASSERT(al != al->fb_data);
1581 al = al->fb_data;
1582 return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1583 } // else ptr == NULL;
1584 } else {
1585 // pool has enough space
1586 ptr = kmp_mk_alloc(*al->memkind, desc.size_a);
1587 if (ptr == NULL) {
1588 if (al->fb == omp_atv_default_mem_fb) {
1589 al = (kmp_allocator_t *)omp_default_mem_alloc;
1590 ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1591 } else if (al->fb == omp_atv_abort_fb) {
1592 KMP_ASSERT(0); // abort fallback requested
1593 } else if (al->fb == omp_atv_allocator_fb) {
1594 KMP_ASSERT(al != al->fb_data);
1595 al = al->fb_data;
1596 return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1597 }
1598 }
1599 }
1600 } else {
1601 // custom allocator, pool size not requested
1602 ptr = kmp_mk_alloc(*al->memkind, desc.size_a);
1603 if (ptr == NULL) {
1604 if (al->fb == omp_atv_default_mem_fb) {
1605 al = (kmp_allocator_t *)omp_default_mem_alloc;
1606 ptr = kmp_mk_alloc(*mk_default, desc.size_a);
1607 } else if (al->fb == omp_atv_abort_fb) {
1608 KMP_ASSERT(0); // abort fallback requested
1609 } else if (al->fb == omp_atv_allocator_fb) {
1610 KMP_ASSERT(al != al->fb_data);
1611 al = al->fb_data;
1612 return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1613 }
1614 }
1615 }
1616 } else if (allocator < kmp_max_mem_alloc) {
1617 if (KMP_IS_TARGET_MEM_ALLOC(allocator)) {
1618 // Use size input directly as the memory may not be accessible on host.
1619 // Use default device for now.
1620 if (__kmp_target_mem_available) {
1621 kmp_int32 device =
1622 __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device;
1623 if (allocator == llvm_omp_target_host_mem_alloc)
1624 ptr = kmp_target_alloc_host(size, device);
1625 else if (allocator == llvm_omp_target_shared_mem_alloc)
1626 ptr = kmp_target_alloc_shared(size, device);
1627 else // allocator == llvm_omp_target_device_mem_alloc
1628 ptr = kmp_target_alloc_device(size, device);
1629 }
1630 return ptr;
1631 }
1632
1633 // pre-defined allocator
1634 if (allocator == omp_high_bw_mem_alloc) {
1635 // ptr = NULL;
1636 } else if (allocator == omp_large_cap_mem_alloc) {
1637 // warnings?
1638 } else {
1639 ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1640 }
1641 } else if (KMP_IS_TARGET_MEM_SPACE(al->memspace)) {
1642 if (__kmp_target_mem_available) {
1643 kmp_int32 device =
1644 __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device;
1645 if (al->memspace == llvm_omp_target_host_mem_space)
1646 ptr = kmp_target_alloc_host(size, device);
1647 else if (al->memspace == llvm_omp_target_shared_mem_space)
1648 ptr = kmp_target_alloc_shared(size, device);
1649 else // al->memspace == llvm_omp_target_device_mem_space
1650 ptr = kmp_target_alloc_device(size, device);
1651 }
1652 return ptr;
1653 } else if (al->pool_size > 0) {
1654 // custom allocator with pool size requested
1655 kmp_uint64 used =
1656 KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, desc.size_a);
1657 if (used + desc.size_a > al->pool_size) {
1658 // not enough space, need to go fallback path
1659 KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1660 if (al->fb == omp_atv_default_mem_fb) {
1661 al = (kmp_allocator_t *)omp_default_mem_alloc;
1662 ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1663 } else if (al->fb == omp_atv_abort_fb) {
1664 KMP_ASSERT(0); // abort fallback requested
1665 } else if (al->fb == omp_atv_allocator_fb) {
1666 KMP_ASSERT(al != al->fb_data);
1667 al = al->fb_data;
1668 return __kmp_alloc(gtid, algn, size, (omp_allocator_handle_t)al);
1669 } // else ptr == NULL;
1670 } else {
1671 // pool has enough space
1672 ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1673 if (ptr == NULL && al->fb == omp_atv_abort_fb) {
1674 KMP_ASSERT(0); // abort fallback requested
1675 } // no sense to look for another fallback because of same internal alloc
1676 }
1677 } else {
1678 // custom allocator, pool size not requested
1679 ptr = __kmp_thread_malloc(__kmp_thread_from_gtid(gtid), desc.size_a);
1680 if (ptr == NULL && al->fb == omp_atv_abort_fb) {
1681 KMP_ASSERT(0); // abort fallback requested
1682 } // no sense to look for another fallback because of same internal alloc
1683 }
1684 KE_TRACE(10, ("__kmp_alloc: T#%d %p=alloc(%d)\n", gtid, ptr, desc.size_a));
1685 if (ptr == NULL)
1686 return NULL;
1687
1688 addr = (kmp_uintptr_t)ptr;
1689 addr_align = (addr + sz_desc + align - 1) & ~(align - 1);
1690 addr_descr = addr_align - sz_desc;
1691
1692 desc.ptr_alloc = ptr;
1693 desc.ptr_align = (void *)addr_align;
1694 desc.allocator = al;
1695 *((kmp_mem_desc_t *)addr_descr) = desc; // save descriptor contents
1696 KMP_MB();
1697
1698 return desc.ptr_align;
1699}
1700
1701void *__kmp_calloc(int gtid, size_t algn, size_t nmemb, size_t size,
1702 omp_allocator_handle_t allocator) {
1703 void *ptr = NULL;
1704 kmp_allocator_t *al;
1705 KMP_DEBUG_ASSERT(__kmp_init_serial);
1706
1707 if (allocator == omp_null_allocator)
1708 allocator = __kmp_threads[gtid]->th.th_def_allocator;
1709
1710 al = RCAST(kmp_allocator_t *, allocator);
1711
1712 if (nmemb == 0 || size == 0)
1713 return ptr;
1714
1715 if ((SIZE_MAX - sizeof(kmp_mem_desc_t)) / size < nmemb) {
1716 if (al->fb == omp_atv_abort_fb) {
1717 KMP_ASSERT(0);
1718 }
1719 return ptr;
1720 }
1721
1722 ptr = __kmp_alloc(gtid, algn, nmemb * size, allocator);
1723
1724 if (ptr) {
1725 memset(ptr, 0x00, nmemb * size);
1726 }
1727 return ptr;
1728}
1729
1730void *__kmp_realloc(int gtid, void *ptr, size_t size,
1731 omp_allocator_handle_t allocator,
1732 omp_allocator_handle_t free_allocator) {
1733 void *nptr = NULL;
1734 KMP_DEBUG_ASSERT(__kmp_init_serial);
1735
1736 if (size == 0) {
1737 if (ptr != NULL)
1738 ___kmpc_free(gtid, ptr, free_allocator);
1739 return nptr;
1740 }
1741
1742 nptr = __kmp_alloc(gtid, 0, size, allocator);
1743
1744 if (nptr != NULL && ptr != NULL) {
1745 kmp_mem_desc_t desc;
1746 kmp_uintptr_t addr_align; // address to return to caller
1747 kmp_uintptr_t addr_descr; // address of memory block descriptor
1748
1749 addr_align = (kmp_uintptr_t)ptr;
1750 addr_descr = addr_align - sizeof(kmp_mem_desc_t);
1751 desc = *((kmp_mem_desc_t *)addr_descr); // read descriptor
1752
1753 KMP_DEBUG_ASSERT(desc.ptr_align == ptr);
1754 KMP_DEBUG_ASSERT(desc.size_orig > 0);
1755 KMP_DEBUG_ASSERT(desc.size_orig < desc.size_a);
1756 KMP_MEMCPY((char *)nptr, (char *)ptr,
1757 (size_t)((size < desc.size_orig) ? size : desc.size_orig));
1758 }
1759
1760 if (nptr != NULL) {
1761 ___kmpc_free(gtid, ptr, free_allocator);
1762 }
1763
1764 return nptr;
1765}
1766
1767void ___kmpc_free(int gtid, void *ptr, omp_allocator_handle_t allocator) {
1768 if (ptr == NULL)
1769 return;
1770
1771 kmp_allocator_t *al;
1772 omp_allocator_handle_t oal;
1773 al = RCAST(kmp_allocator_t *, CCAST(omp_allocator_handle_t, allocator));
1774 kmp_mem_desc_t desc;
1775 kmp_uintptr_t addr_align; // address to return to caller
1776 kmp_uintptr_t addr_descr; // address of memory block descriptor
1777 if (KMP_IS_TARGET_MEM_ALLOC(allocator) ||
1778 (allocator > kmp_max_mem_alloc &&
1779 KMP_IS_TARGET_MEM_SPACE(al->memspace))) {
1780 KMP_DEBUG_ASSERT(kmp_target_free);
1781 kmp_int32 device =
1782 __kmp_threads[gtid]->th.th_current_task->td_icvs.default_device;
1783 kmp_target_free(ptr, device);
1784 return;
1785 }
1786
1787 addr_align = (kmp_uintptr_t)ptr;
1788 addr_descr = addr_align - sizeof(kmp_mem_desc_t);
1789 desc = *((kmp_mem_desc_t *)addr_descr); // read descriptor
1790
1791 KMP_DEBUG_ASSERT(desc.ptr_align == ptr);
1792 if (allocator) {
1793 KMP_DEBUG_ASSERT(desc.allocator == al || desc.allocator == al->fb_data);
1794 }
1795 al = desc.allocator;
1796 oal = (omp_allocator_handle_t)al; // cast to void* for comparisons
1797 KMP_DEBUG_ASSERT(al);
1798
1799 if (__kmp_memkind_available) {
1800 if (oal < kmp_max_mem_alloc) {
1801 // pre-defined allocator
1802 if (oal == omp_high_bw_mem_alloc && mk_hbw_preferred) {
1803 kmp_mk_free(*mk_hbw_preferred, desc.ptr_alloc);
1804 } else if (oal == omp_large_cap_mem_alloc && mk_dax_kmem_all) {
1805 kmp_mk_free(*mk_dax_kmem_all, desc.ptr_alloc);
1806 } else {
1807 kmp_mk_free(*mk_default, desc.ptr_alloc);
1808 }
1809 } else {
1810 if (al->pool_size > 0) { // custom allocator with pool size requested
1811 kmp_uint64 used =
1812 KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1813 (void)used; // to suppress compiler warning
1814 KMP_DEBUG_ASSERT(used >= desc.size_a);
1815 }
1816 kmp_mk_free(*al->memkind, desc.ptr_alloc);
1817 }
1818 } else {
1819 if (oal > kmp_max_mem_alloc && al->pool_size > 0) {
1820 kmp_uint64 used =
1821 KMP_TEST_THEN_ADD64((kmp_int64 *)&al->pool_used, -desc.size_a);
1822 (void)used; // to suppress compiler warning
1823 KMP_DEBUG_ASSERT(used >= desc.size_a);
1824 }
1825 __kmp_thread_free(__kmp_thread_from_gtid(gtid), desc.ptr_alloc);
1826 }
1827}
1828
1829/* If LEAK_MEMORY is defined, __kmp_free() will *not* free memory. It causes
1830 memory leaks, but it may be useful for debugging memory corruptions, used
1831 freed pointers, etc. */
1832/* #define LEAK_MEMORY */
1833struct kmp_mem_descr { // Memory block descriptor.
1834 void *ptr_allocated; // Pointer returned by malloc(), subject for free().
1835 size_t size_allocated; // Size of allocated memory block.
1836 void *ptr_aligned; // Pointer to aligned memory, to be used by client code.
1837 size_t size_aligned; // Size of aligned memory block.
1838};
1839typedef struct kmp_mem_descr kmp_mem_descr_t;
1840
1841/* Allocate memory on requested boundary, fill allocated memory with 0x00.
1842 NULL is NEVER returned, __kmp_abort() is called in case of memory allocation
1843 error. Must use __kmp_free when freeing memory allocated by this routine! */
1844static void *___kmp_allocate_align(size_t size,
1845 size_t alignment KMP_SRC_LOC_DECL) {
1846 /* __kmp_allocate() allocates (by call to malloc()) bigger memory block than
1847 requested to return properly aligned pointer. Original pointer returned
1848 by malloc() and size of allocated block is saved in descriptor just
1849 before the aligned pointer. This information used by __kmp_free() -- it
1850 has to pass to free() original pointer, not aligned one.
1851
1852 +---------+------------+-----------------------------------+---------+
1853 | padding | descriptor | aligned block | padding |
1854 +---------+------------+-----------------------------------+---------+
1855 ^ ^
1856 | |
1857 | +- Aligned pointer returned to caller
1858 +- Pointer returned by malloc()
1859
1860 Aligned block is filled with zeros, paddings are filled with 0xEF. */
1861
1862 kmp_mem_descr_t descr;
1863 kmp_uintptr_t addr_allocated; // Address returned by malloc().
1864 kmp_uintptr_t addr_aligned; // Aligned address to return to caller.
1865 kmp_uintptr_t addr_descr; // Address of memory block descriptor.
1866
1867 KE_TRACE(25, ("-> ___kmp_allocate_align( %d, %d ) called from %s:%d\n",
1868 (int)size, (int)alignment KMP_SRC_LOC_PARM));
1869
1870 KMP_DEBUG_ASSERT(alignment < 32 * 1024); // Alignment should not be too
1871 KMP_DEBUG_ASSERT(sizeof(void *) <= sizeof(kmp_uintptr_t));
1872 // Make sure kmp_uintptr_t is enough to store addresses.
1873
1874 descr.size_aligned = size;
1875 descr.size_allocated =
1876 descr.size_aligned + sizeof(kmp_mem_descr_t) + alignment;
1877
1878#if KMP_DEBUG
1879 descr.ptr_allocated = _malloc_src_loc(descr.size_allocated, _file_, _line_);
1880#else
1881 descr.ptr_allocated = malloc_src_loc(descr.size_allocated KMP_SRC_LOC_PARM);
1882#endif
1883 KE_TRACE(10, (" malloc( %d ) returned %p\n", (int)descr.size_allocated,
1884 descr.ptr_allocated));
1885 if (descr.ptr_allocated == NULL) {
1886 KMP_FATAL(OutOfHeapMemory);
1887 }
1888
1889 addr_allocated = (kmp_uintptr_t)descr.ptr_allocated;
1890 addr_aligned =
1891 (addr_allocated + sizeof(kmp_mem_descr_t) + alignment) & ~(alignment - 1);
1892 addr_descr = addr_aligned - sizeof(kmp_mem_descr_t);
1893
1894 descr.ptr_aligned = (void *)addr_aligned;
1895
1896 KE_TRACE(26, (" ___kmp_allocate_align: "
1897 "ptr_allocated=%p, size_allocated=%d, "
1898 "ptr_aligned=%p, size_aligned=%d\n",
1899 descr.ptr_allocated, (int)descr.size_allocated,
1900 descr.ptr_aligned, (int)descr.size_aligned));
1901
1902 KMP_DEBUG_ASSERT(addr_allocated <= addr_descr);
1903 KMP_DEBUG_ASSERT(addr_descr + sizeof(kmp_mem_descr_t) == addr_aligned);
1904 KMP_DEBUG_ASSERT(addr_aligned + descr.size_aligned <=
1905 addr_allocated + descr.size_allocated);
1906 KMP_DEBUG_ASSERT(addr_aligned % alignment == 0);
1907#ifdef KMP_DEBUG
1908 memset(descr.ptr_allocated, 0xEF, descr.size_allocated);
1909// Fill allocated memory block with 0xEF.
1910#endif
1911 memset(descr.ptr_aligned, 0x00, descr.size_aligned);
1912 // Fill the aligned memory block (which is intended for using by caller) with
1913 // 0x00. Do not
1914 // put this filling under KMP_DEBUG condition! Many callers expect zeroed
1915 // memory. (Padding
1916 // bytes remain filled with 0xEF in debugging library.)
1917 *((kmp_mem_descr_t *)addr_descr) = descr;
1918
1919 KMP_MB();
1920
1921 KE_TRACE(25, ("<- ___kmp_allocate_align() returns %p\n", descr.ptr_aligned));
1922 return descr.ptr_aligned;
1923} // func ___kmp_allocate_align
1924
1925/* Allocate memory on cache line boundary, fill allocated memory with 0x00.
1926 Do not call this func directly! Use __kmp_allocate macro instead.
1927 NULL is NEVER returned, __kmp_abort() is called in case of memory allocation
1928 error. Must use __kmp_free when freeing memory allocated by this routine! */
1929void *___kmp_allocate(size_t size KMP_SRC_LOC_DECL) {
1930 void *ptr;
1931 KE_TRACE(25, ("-> __kmp_allocate( %d ) called from %s:%d\n",
1932 (int)size KMP_SRC_LOC_PARM));
1933 ptr = ___kmp_allocate_align(size, __kmp_align_alloc KMP_SRC_LOC_PARM);
1934 KE_TRACE(25, ("<- __kmp_allocate() returns %p\n", ptr));
1935 return ptr;
1936} // func ___kmp_allocate
1937
1938/* Allocate memory on page boundary, fill allocated memory with 0x00.
1939 Does not call this func directly! Use __kmp_page_allocate macro instead.
1940 NULL is NEVER returned, __kmp_abort() is called in case of memory allocation
1941 error. Must use __kmp_free when freeing memory allocated by this routine! */
1942void *___kmp_page_allocate(size_t size KMP_SRC_LOC_DECL) {
1943 int page_size = 8 * 1024;
1944 void *ptr;
1945
1946 KE_TRACE(25, ("-> __kmp_page_allocate( %d ) called from %s:%d\n",
1947 (int)size KMP_SRC_LOC_PARM));
1948 ptr = ___kmp_allocate_align(size, page_size KMP_SRC_LOC_PARM);
1949 KE_TRACE(25, ("<- __kmp_page_allocate( %d ) returns %p\n", (int)size, ptr));
1950 return ptr;
1951} // ___kmp_page_allocate
1952
1953/* Free memory allocated by __kmp_allocate() and __kmp_page_allocate().
1954 In debug mode, fill the memory block with 0xEF before call to free(). */
1955void ___kmp_free(void *ptr KMP_SRC_LOC_DECL) {
1956 kmp_mem_descr_t descr;
1957#if KMP_DEBUG
1958 kmp_uintptr_t addr_allocated; // Address returned by malloc().
1959 kmp_uintptr_t addr_aligned; // Aligned address passed by caller.
1960#endif
1961 KE_TRACE(25,
1962 ("-> __kmp_free( %p ) called from %s:%d\n", ptr KMP_SRC_LOC_PARM));
1963 KMP_ASSERT(ptr != NULL);
1964
1965 descr = *(kmp_mem_descr_t *)((kmp_uintptr_t)ptr - sizeof(kmp_mem_descr_t));
1966
1967 KE_TRACE(26, (" __kmp_free: "
1968 "ptr_allocated=%p, size_allocated=%d, "
1969 "ptr_aligned=%p, size_aligned=%d\n",
1970 descr.ptr_allocated, (int)descr.size_allocated,
1971 descr.ptr_aligned, (int)descr.size_aligned));
1972#if KMP_DEBUG
1973 addr_allocated = (kmp_uintptr_t)descr.ptr_allocated;
1974 addr_aligned = (kmp_uintptr_t)descr.ptr_aligned;
1975 KMP_DEBUG_ASSERT(addr_aligned % CACHE_LINE == 0);
1976 KMP_DEBUG_ASSERT(descr.ptr_aligned == ptr);
1977 KMP_DEBUG_ASSERT(addr_allocated + sizeof(kmp_mem_descr_t) <= addr_aligned);
1978 KMP_DEBUG_ASSERT(descr.size_aligned < descr.size_allocated);
1979 KMP_DEBUG_ASSERT(addr_aligned + descr.size_aligned <=
1980 addr_allocated + descr.size_allocated);
1981 memset(descr.ptr_allocated, 0xEF, descr.size_allocated);
1982// Fill memory block with 0xEF, it helps catch using freed memory.
1983#endif
1984
1985#ifndef LEAK_MEMORY
1986 KE_TRACE(10, (" free( %p )\n", descr.ptr_allocated));
1987#ifdef KMP_DEBUG
1988 _free_src_loc(descr.ptr_allocated, _file_, _line_);
1989#else
1990 free_src_loc(descr.ptr_allocated KMP_SRC_LOC_PARM);
1991#endif
1992#endif
1993 KMP_MB();
1994 KE_TRACE(25, ("<- __kmp_free() returns\n"));
1995} // func ___kmp_free
1996
1997#if USE_FAST_MEMORY == 3
1998// Allocate fast memory by first scanning the thread's free lists
1999// If a chunk the right size exists, grab it off the free list.
2000// Otherwise allocate normally using kmp_thread_malloc.
2001
2002// AC: How to choose the limit? Just get 16 for now...
2003#define KMP_FREE_LIST_LIMIT 16
2004
2005// Always use 128 bytes for determining buckets for caching memory blocks
2006#define DCACHE_LINE 128
2007
2008void *___kmp_fast_allocate(kmp_info_t *this_thr, size_t size KMP_SRC_LOC_DECL) {
2009 void *ptr;
2010 size_t num_lines, idx;
2011 int index;
2012 void *alloc_ptr;
2013 size_t alloc_size;
2014 kmp_mem_descr_t *descr;
2015
2016 KE_TRACE(25, ("-> __kmp_fast_allocate( T#%d, %d ) called from %s:%d\n",
2017 __kmp_gtid_from_thread(this_thr), (int)size KMP_SRC_LOC_PARM));
2018
2019 num_lines = (size + DCACHE_LINE - 1) / DCACHE_LINE;
2020 idx = num_lines - 1;
2021 KMP_DEBUG_ASSERT(idx >= 0);
2022 if (idx < 2) {
2023 index = 0; // idx is [ 0, 1 ], use first free list
2024 num_lines = 2; // 1, 2 cache lines or less than cache line
2025 } else if ((idx >>= 2) == 0) {
2026 index = 1; // idx is [ 2, 3 ], use second free list
2027 num_lines = 4; // 3, 4 cache lines
2028 } else if ((idx >>= 2) == 0) {
2029 index = 2; // idx is [ 4, 15 ], use third free list
2030 num_lines = 16; // 5, 6, ..., 16 cache lines
2031 } else if ((idx >>= 2) == 0) {
2032 index = 3; // idx is [ 16, 63 ], use fourth free list
2033 num_lines = 64; // 17, 18, ..., 64 cache lines
2034 } else {
2035 goto alloc_call; // 65 or more cache lines ( > 8KB ), don't use free lists
2036 }
2037
2038 ptr = this_thr->th.th_free_lists[index].th_free_list_self;
2039 if (ptr != NULL) {
2040 // pop the head of no-sync free list
2041 this_thr->th.th_free_lists[index].th_free_list_self = *((void **)ptr);
2042 KMP_DEBUG_ASSERT(this_thr == ((kmp_mem_descr_t *)((kmp_uintptr_t)ptr -
2043 sizeof(kmp_mem_descr_t)))
2044 ->ptr_aligned);
2045 goto end;
2046 }
2047 ptr = TCR_SYNC_PTR(this_thr->th.th_free_lists[index].th_free_list_sync);
2048 if (ptr != NULL) {
2049 // no-sync free list is empty, use sync free list (filled in by other
2050 // threads only)
2051 // pop the head of the sync free list, push NULL instead
2052 while (!KMP_COMPARE_AND_STORE_PTR(
2053 &this_thr->th.th_free_lists[index].th_free_list_sync, ptr, nullptr)) {
2054 KMP_CPU_PAUSE();
2055 ptr = TCR_SYNC_PTR(this_thr->th.th_free_lists[index].th_free_list_sync);
2056 }
2057 // push the rest of chain into no-sync free list (can be NULL if there was
2058 // the only block)
2059 this_thr->th.th_free_lists[index].th_free_list_self = *((void **)ptr);
2060 KMP_DEBUG_ASSERT(this_thr == ((kmp_mem_descr_t *)((kmp_uintptr_t)ptr -
2061 sizeof(kmp_mem_descr_t)))
2062 ->ptr_aligned);
2063 goto end;
2064 }
2065
2066alloc_call:
2067 // haven't found block in the free lists, thus allocate it
2068 size = num_lines * DCACHE_LINE;
2069
2070 alloc_size = size + sizeof(kmp_mem_descr_t) + DCACHE_LINE;
2071 KE_TRACE(25, ("__kmp_fast_allocate: T#%d Calling __kmp_thread_malloc with "
2072 "alloc_size %d\n",
2073 __kmp_gtid_from_thread(this_thr), alloc_size));
2074 alloc_ptr = bget(this_thr, (bufsize)alloc_size);
2075
2076 // align ptr to DCACHE_LINE
2077 ptr = (void *)((((kmp_uintptr_t)alloc_ptr) + sizeof(kmp_mem_descr_t) +
2078 DCACHE_LINE) &
2079 ~(DCACHE_LINE - 1));
2080 descr = (kmp_mem_descr_t *)(((kmp_uintptr_t)ptr) - sizeof(kmp_mem_descr_t));
2081
2082 descr->ptr_allocated = alloc_ptr; // remember allocated pointer
2083 // we don't need size_allocated
2084 descr->ptr_aligned = (void *)this_thr; // remember allocating thread
2085 // (it is already saved in bget buffer,
2086 // but we may want to use another allocator in future)
2087 descr->size_aligned = size;
2088
2089end:
2090 KE_TRACE(25, ("<- __kmp_fast_allocate( T#%d ) returns %p\n",
2091 __kmp_gtid_from_thread(this_thr), ptr));
2092 return ptr;
2093} // func __kmp_fast_allocate
2094
2095// Free fast memory and place it on the thread's free list if it is of
2096// the correct size.
2097void ___kmp_fast_free(kmp_info_t *this_thr, void *ptr KMP_SRC_LOC_DECL) {
2098 kmp_mem_descr_t *descr;
2099 kmp_info_t *alloc_thr;
2100 size_t size;
2101 size_t idx;
2102 int index;
2103
2104 KE_TRACE(25, ("-> __kmp_fast_free( T#%d, %p ) called from %s:%d\n",
2105 __kmp_gtid_from_thread(this_thr), ptr KMP_SRC_LOC_PARM));
2106 KMP_ASSERT(ptr != NULL);
2107
2108 descr = (kmp_mem_descr_t *)(((kmp_uintptr_t)ptr) - sizeof(kmp_mem_descr_t));
2109
2110 KE_TRACE(26, (" __kmp_fast_free: size_aligned=%d\n",
2111 (int)descr->size_aligned));
2112
2113 size = descr->size_aligned; // 2, 4, 16, 64, 65, 66, ... cache lines
2114
2115 idx = DCACHE_LINE * 2; // 2 cache lines is minimal size of block
2116 if (idx == size) {
2117 index = 0; // 2 cache lines
2118 } else if ((idx <<= 1) == size) {
2119 index = 1; // 4 cache lines
2120 } else if ((idx <<= 2) == size) {
2121 index = 2; // 16 cache lines
2122 } else if ((idx <<= 2) == size) {
2123 index = 3; // 64 cache lines
2124 } else {
2125 KMP_DEBUG_ASSERT(size > DCACHE_LINE * 64);
2126 goto free_call; // 65 or more cache lines ( > 8KB )
2127 }
2128
2129 alloc_thr = (kmp_info_t *)descr->ptr_aligned; // get thread owning the block
2130 if (alloc_thr == this_thr) {
2131 // push block to self no-sync free list, linking previous head (LIFO)
2132 *((void **)ptr) = this_thr->th.th_free_lists[index].th_free_list_self;
2133 this_thr->th.th_free_lists[index].th_free_list_self = ptr;
2134 } else {
2135 void *head = this_thr->th.th_free_lists[index].th_free_list_other;
2136 if (head == NULL) {
2137 // Create new free list
2138 this_thr->th.th_free_lists[index].th_free_list_other = ptr;
2139 *((void **)ptr) = NULL; // mark the tail of the list
2140 descr->size_allocated = (size_t)1; // head of the list keeps its length
2141 } else {
2142 // need to check existed "other" list's owner thread and size of queue
2143 kmp_mem_descr_t *dsc =
2144 (kmp_mem_descr_t *)((char *)head - sizeof(kmp_mem_descr_t));
2145 // allocating thread, same for all queue nodes
2146 kmp_info_t *q_th = (kmp_info_t *)(dsc->ptr_aligned);
2147 size_t q_sz =
2148 dsc->size_allocated + 1; // new size in case we add current task
2149 if (q_th == alloc_thr && q_sz <= KMP_FREE_LIST_LIMIT) {
2150 // we can add current task to "other" list, no sync needed
2151 *((void **)ptr) = head;
2152 descr->size_allocated = q_sz;
2153 this_thr->th.th_free_lists[index].th_free_list_other = ptr;
2154 } else {
2155 // either queue blocks owner is changing or size limit exceeded
2156 // return old queue to allocating thread (q_th) synchronously,
2157 // and start new list for alloc_thr's tasks
2158 void *old_ptr;
2159 void *tail = head;
2160 void *next = *((void **)head);
2161 while (next != NULL) {
2162 KMP_DEBUG_ASSERT(
2163 // queue size should decrease by 1 each step through the list
2164 ((kmp_mem_descr_t *)((char *)next - sizeof(kmp_mem_descr_t)))
2165 ->size_allocated +
2166 1 ==
2167 ((kmp_mem_descr_t *)((char *)tail - sizeof(kmp_mem_descr_t)))
2168 ->size_allocated);
2169 tail = next; // remember tail node
2170 next = *((void **)next);
2171 }
2172 KMP_DEBUG_ASSERT(q_th != NULL);
2173 // push block to owner's sync free list
2174 old_ptr = TCR_PTR(q_th->th.th_free_lists[index].th_free_list_sync);
2175 /* the next pointer must be set before setting free_list to ptr to avoid
2176 exposing a broken list to other threads, even for an instant. */
2177 *((void **)tail) = old_ptr;
2178
2179 while (!KMP_COMPARE_AND_STORE_PTR(
2180 &q_th->th.th_free_lists[index].th_free_list_sync, old_ptr, head)) {
2181 KMP_CPU_PAUSE();
2182 old_ptr = TCR_PTR(q_th->th.th_free_lists[index].th_free_list_sync);
2183 *((void **)tail) = old_ptr;
2184 }
2185
2186 // start new list of not-selt tasks
2187 this_thr->th.th_free_lists[index].th_free_list_other = ptr;
2188 *((void **)ptr) = NULL;
2189 descr->size_allocated = (size_t)1; // head of queue keeps its length
2190 }
2191 }
2192 }
2193 goto end;
2194
2195free_call:
2196 KE_TRACE(25, ("__kmp_fast_free: T#%d Calling __kmp_thread_free for size %d\n",
2197 __kmp_gtid_from_thread(this_thr), size));
2198 __kmp_bget_dequeue(this_thr); /* Release any queued buffers */
2199 brel(this_thr, descr->ptr_allocated);
2200
2201end:
2202 KE_TRACE(25, ("<- __kmp_fast_free() returns\n"));
2203
2204} // func __kmp_fast_free
2205
2206// Initialize the thread free lists related to fast memory
2207// Only do this when a thread is initially created.
2208void __kmp_initialize_fast_memory(kmp_info_t *this_thr) {
2209 KE_TRACE(10, ("__kmp_initialize_fast_memory: Called from th %p\n", this_thr));
2210
2211 memset(this_thr->th.th_free_lists, 0, NUM_LISTS * sizeof(kmp_free_list_t));
2212}
2213
2214// Free the memory in the thread free lists related to fast memory
2215// Only do this when a thread is being reaped (destroyed).
2216void __kmp_free_fast_memory(kmp_info_t *th) {
2217 // Suppose we use BGET underlying allocator, walk through its structures...
2218 int bin;
2219 thr_data_t *thr = get_thr_data(th);
2220 void **lst = NULL;
2221
2222 KE_TRACE(
2223 5, ("__kmp_free_fast_memory: Called T#%d\n", __kmp_gtid_from_thread(th)));
2224
2225 __kmp_bget_dequeue(th); // Release any queued buffers
2226
2227 // Dig through free lists and extract all allocated blocks
2228 for (bin = 0; bin < MAX_BGET_BINS; ++bin) {
2229 bfhead_t *b = thr->freelist[bin].ql.flink;
2230 while (b != &thr->freelist[bin]) {
2231 if ((kmp_uintptr_t)b->bh.bb.bthr & 1) { // the buffer is allocated address
2232 *((void **)b) =
2233 lst; // link the list (override bthr, but keep flink yet)
2234 lst = (void **)b; // push b into lst
2235 }
2236 b = b->ql.flink; // get next buffer
2237 }
2238 }
2239 while (lst != NULL) {
2240 void *next = *lst;
2241 KE_TRACE(10, ("__kmp_free_fast_memory: freeing %p, next=%p th %p (%d)\n",
2242 lst, next, th, __kmp_gtid_from_thread(th)));
2243 (*thr->relfcn)(lst);
2244#if BufStats
2245 // count blocks to prevent problems in __kmp_finalize_bget()
2246 thr->numprel++; /* Nr of expansion block releases */
2247 thr->numpblk--; /* Total number of blocks */
2248#endif
2249 lst = (void **)next;
2250 }
2251
2252 KE_TRACE(
2253 5, ("__kmp_free_fast_memory: Freed T#%d\n", __kmp_gtid_from_thread(th)));
2254}
2255
2256#endif // USE_FAST_MEMORY